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A B S T R A C T   

Fuzzy time series (FTS) forecasting models show a great performance in predicting time series, such as air 
pollution time series. However, they have caused major issues by utilizing random partitioning of the universe of 
discourse and ignoring repeated fuzzy sets. In this study, a novel hybrid forecasting model by integrating fuzzy 
time series to Markov chain and C-Means clustering techniques with an optimal number of clusters is presented. 
This hybridization contributes to generating effective lengths of intervals and thus, improving the model accu-
racy. The proposed model was verified and validated with real time series data sets, which are the benchmark 
data of actual trading of Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and PM10 con-
centration data from Melaka, Malaysia. In addition, a comparison was made with some existing fuzzy time series 
models. Furthermore, the mean absolute percentage error, mean squared error and Theil’s U statistic were 
calculated as evaluation criteria to illustrate the performance of the proposed model. The empirical analysis 
shows that the proposed model handles the time series data sets more efficiently and provides better overall 
forecasting results than existing FTS models. The results prove that the proposed model has greatly improved the 
prediction accuracy, for which it outperforms several fuzzy time series models. Therefore, it can be concluded 
that the proposed model is a better option for forecasting air pollution parameters and any kind of random 
parameters.   

1. Introduction 

In 1965, Zadeh (1965) proposed the fuzzy set theory and Fuzzy Logic 
as an extension to the already available classical crisp logics to multi-
variate form. Song and Chissom (1993, 1994) introduced the first-order 
fuzzy time series (FTS) model by replacing the values of the time series 
with fuzzy sets in order to deal with the fuzzy, incomplete sequences 
containing noise. Various FTS models have been developed by 
improving the three main stages, which are fuzzification, fuzzy infer-
ence, and defuzzification, to reach high accuracy of the forecasting 
models (Abdullah and Ling, 2012). For instance, Chen (1996) has 
improved Song and Chissom’s model by employing fuzzy logical relation 
tables to reduce the computational complexity of the model. Huarng 
(2001) and Huarng and Yu (2006) improved the forecasting accuracy of 
Chen’s model (Chen, 1996) by extending the model by determining the 

intervals using average-based and distribution-based lengths. Therefore, 
many forecasting methods based on this framework were proposed over 
the past decades. Most of these researches have used an interval-based 
FTS model to handle the fuzzification of the time series and have 
applied fuzzy logic relationships, which can be executed on the FTS 
dataset, for making a forecast. 

Prediction of air pollution is a very important task on multiple levels 
- community, national and global as it is beneficial to air pollution 
assessment where the result found can be used for managing the air 
quality. Accurate forecasting enables people to plan ahead, decreasing 
the effects on health and the costs associated. Particularly, predicting the 
concentration of air pollutants is vital for assessing the effects of air 
pollutants on human health (Yan et al., 2019; Alyousifi et al., 2018, 
2019; Wang et al., 2016). Many researchers have applied the FTS models 
for forecasting air pollution levels (Alyousifi et al., 2020a, 2021a, 
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2021b). For instance, Cagcag et al. (2013) have predicted air pollution 
in Ankara based on a new seasonal FTS model. In addition, Koo et al. 
(2020) have utilized some statistical models in order to forecast the air 
pollution events and made a comprising to determine the adequate 
model. Furthermore, Cheng et al. (2011) have introduced an FTS model 
for forecasting daily O3 concentrations in Taiwan. Apart from that, the 
FTS model based on Fuzzy K-Medoids clustering was suggested for 
minimizing the sensitivity of outliers in order to produce adequate 
forecasts of air pollution (Dincer and Akkuş, 2018). Furthermore, an 
integrated model of the fuzzy theory and advanced optimization algo-
rithm was introduced in air pollution forecasting by Yang et al. (2019). 
Therefore, the hybrid models in prediction are quite often used in the 
related literature. A hybrid FTS model proposed by Wang et al. (2018) 
has taken the attention of the research world in predicting air pollution 
in China. 

The hybrid models in time series forecasting usually perform better 
than their single models. For example, the hybrid models in conven-
tional time series, such as the Autoregressive Moving Average (ARMA) 
and Autoregressive Integrated Moving Average (ARIMA) models, which 
are combined of the autoregressive (AR) and moving average (MA) 
models, have shown greater improvement in the model performance 
than their single models (Box et al., 2015; Zhang, 2003). In addition, a 
hybrid model based on combining of linear model ARIMA and a 
nonlinear model ANN has proven improved forecasting accuracy 
(Zhang, 2003; Fraiha Lopes et al., 2020). Furthermore, Mohamadi et al. 
(2017) proposed a hybrid ARIMA-GARCH model for predicting epileptic 
seizures and the method was successful. Singh et al. (2020) have also 
applied the hybrid wavelet-ARIMA model for predicting death cases due 
to COVID-19 recently and their findings were impressive. They have 
found that the hybrid model has outperformed the single models of its 
components not only in predicting air pollution levels but also in some 
other random parameters. 

Many researchers have proposed a variety of hybrid FTS models in 
order to address some of these issues in fuzzy time series. For instance, a 
hybrid FTS based Markov chain model (FTSMC) was proposed by Tsaur 
(2012), which was used for determining the proper weights of the fuzzy 
relationships among the data points of the time series pattern. FTSMC is 
superior to many methods available in the literature in terms of model 
accuracy. Nevertheless, it has a drawback in utilizing an arbitrary par-
titioning of intervals. Therefore, it could not determine the appropriate 
length of the intervals, which is considered a shortcoming in deter-
mining the effective length of the interval in this hybrid model. Apart 
from this, Alyousifi et al. (2020b) have proposed the use of the FTSMC 
model based on the optimal grid partition method for modeling air 
pollution events in Malaysia. Moreover, Chen and Chen (2015) con-
structed a hybrid FTS model based on granular computing. Zhang et al. 
(2020) proposed a hybrid FTS model based on multiple linear regression 
and clustering techniques. They found that the model demonstrates its 
ability in dealing with uncertainties and enhances the rate of forecasting 
accuracy. Furthermore, Singh (2018) proposed a new fuzzy time series 
model based on artificial neural networks for forecasting rainfall. He 
found that the model has the robustness to deal with one-factor time 
series data sets more efficiently than existing FTS models. Recently, 
Singh (2021) proposed a new fuzzy-quantum time series model which is 
a combination between a developed quantum optimization algorithm 
(QOA) and fuzzy time series. The model proposed showed its ability in 
converging very fast compared to the existing models and can evolve 
one step ahead of forecasted results. 

Clustering techniques are commonly adopted by the fuzzy time series 
model, and they are mostly applied to determine the fuzzy sets to 
generate appropriate partitioning of the universe of discourse (Zhang 
et al., 2020; Van Tinh et al., 2016). The hybrid model of the FTS model 
and the C-Means clustering technique have outperformed the FTS 
models and can be found in the literature. For example, Van Tinh et al. 
(2016) have proposed a hybrid FTS and K-Means clustering for pre-
dicting enrollment at the University of Alabama, United States of 

America. Likewise, Kai et al. (2010) have proposed a forecasting model 
for FTS based on K-Means clustering. Cheng et al. (2016) have also 
defined a similarity with a fuzzy logic relationship and employed 
C-means to improve the forecasting accuracy. In addition, Chen and 
Chang (2010) have applied a fuzzy C-means clustering algorithm to 
construct fuzzy rules to make a prediction. Furthermore, Askari et al. 
(2015) have applied fuzzy C-means clustering in combination with FTS, 
which showed an improvement in the prediction accuracy of the model. 
However, all of these had a limitation in dealing with repetitions of 
observations and the number of clusters chosen randomly, which may 
lead to insufficient length of intervals and inadequate forecasting 
accuracy. 

The accuracy of the FTS modeling approach depends on two main 
factors, namely the length of intervals and the handling of repeated 
fuzzy sets. Therefore, to overcome the above-stated drawbacks, this 
study proposes a novel hybrid FTS model (FTSMC-CMeans) by inte-
grating the fuzzy time series with Markov chain and C-Means clustering 
algorithm. In particular, the C-Means clustering algorithm was applied 
with the optimal number of clusters for determining the appropriate 
length of the intervals, and the Markov chain was implemented for 
handling the repeated fuzzy sets and determining the proper weights. 
Although the idea of using the C-Means clustering algorithm for parti-
tioning historical datasets into intervals of different lengths has been 
adopted by several researchers, this study is different from them. The C- 
Means clustering algorithm was applied after determining the optimal 
number of clusters in the proposed method. Moreover, it was integrated 
with FTS and Markov chain, which can help to improve the prediction 
result significantly. Therefore, it is expected that the hybrid model 
overcomes the limitations showcased and produces better prediction 
accuracy of the model. The validation of the model performance was 
determined by comparing it with some existing FTS models. The next 
sections of this paper are organized as follows. Section 2 presents the 
methodology, involving basic definitions, and explains the algorithms of 
the proposed forecasting model, and describes the key steps in detail. 
Section 3 demonstrates the implementation of the proposed model and 
algorithm using the data of TAIEX for each step. Next, Section 4 presents 
the experimental results of the model proposed for the TAIEX and PM10 
data and displays the comparison of forecasting results of the model and 
existing models while the conclusions are given in Section 5. 

2. Methodology 

As stated earlier, FTS is a forecasting model based on fuzzy set theory 
and fuzzy logic. FTS models use fuzzy sets for their advantages in solving 
non-linear time series for prediction. For example, FTS can model non- 
linear and uncertain systems, incorporate expert opinions and experi-
ences in the modeling process, handle linguistic variables, do not require 
statistical assumptions, and finally provide adequate performance for 
data sets with a small number of observations, such as a sample size of 
15 or 20. In general, the basic steps for designing FTS models to produce 
a forecast are:  

(1) First, define the universe of discourse (U), divide U into an 
equal number of intervals  

(2) Then, determine the fuzzy sets on the universe of discourse and 
fuzzify the time series  

(3) Next, establish the model of the existing fuzzy logic relationships 
in the fuzzified time series and  

(4) Finally, calculate the forecasts and defuzzify the forecast values. 

2.1. Basic fuzzy time-series definitions 

In this subsection, the main FTS definitions are listed below. 
A fuzzy set is a class with varying degrees of membership in the set. 

Let U be the universe of discourse, U = {u1, u2, …, un}, which is 
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discrete and finite, then fuzzy set A of U can be defined as given in Eq. 
(1). 

A =
fA(u1)

u1
+

fA(u2)

u2
+ … =

∑

i

fA(ui)

ui
(1) 

where  
fAi is the membership function of fuzzy set A; fAi :U→[0,1], fAi (ur)∈[0,1] and 
1≤r≤n. The fA(ui) is the degree of membership of the element ui in the fuzzy 
set A. Based on these the following time series definitions can be listed. 

Definition 1. Let X(t)(t=0,1,2,...),X(t)(t=0,1,2,...),a subset of real 
numbers, be the universe of discourse on which fuzzy sets fj(t) (j =1,2,…)

are defined, and letF(t) be a collection of f1(t), f2(t).
Then F(t) is called an FTS onX(t) (Song and Chissom, 1993, 1994). 

Definition 2. If F(t) is caused by F(t − 1), i.e., F(t −
1)→F(t), then this relationship can be represented as shown in the 
following Eq. (2). 

F(t) = F(t − 1) ◦ R(t, t − 1) (2)  

where R(t, t − 1) is a fuzzy relationship between F(t) and F(t − 1). 
Here, R is the union of fuzzy relations and “◦” is the max-min compo-
sition operator. It is also called the first-order model of F(t) (Song and 
Chissom, 1993, 1994). 

Definition 3. Let F(t) be an FTS, and R(t, t − 1) be the first− order 
model of F(t). IfR(t, t − 1)= R(t − 1, t − 2) for any time t, i.e., R(t, t − 1)
is independent of t, and F(t) only has finite elements. Then F(t) is called a 
time-invariant FTS. Otherwise, it is called a time-variant FTS (Song and 
Chissom, 1993, 1994). 

Definition 4. Suppose that F(t − 1)=Ai and theF(t)=Aj.The 
relationship between two consecutive observations F(t − 1) and F(t) is referred 
to a fuzzy logicalrelationship(FLR),which can be defined as Ai→Aj,where Ai 

and Aj are the left-hand and right-hand sides (or the previous state and 
current state) of FLR, respectively (Song and Chissom, 1993, 1994; 
Alyousifi et al., 2019). 

Definition 5. Suppose the FLRs, Ai→Aj1 , Ai→Aj2 , … ,

Ai→Ajm. If the FLRs having the same previous state, then they can be 
grouped into the same fuzzy logical relationship group (FLRG) (Chen, 
1996). Thus, these FLRs can be grouped into the same FLRG 
as: Ai→Aj1, Aj2, …, Ajm (Song and Chissom, 1993, 1994). 

2.2. C-Means clustering technique 

The C-Means clustering technique (Hartigan, 1979; Zhang and Zhu, 
2012) is one of the well-known unsupervised learning algorithms. It is a 
partitioning clustering algorithm, which partitions a given data set into a 
set of C clusters. The result of the C-Means clustering technique depends 
on the number of clusters. Apart from that, the main matter in parti-
tioning clustering is determining the optimal number of clusters in a 
data set. For instance, the C-Means clustering requires the user to specify 
the number of clusters k in order to be generated. Accordingly, in this 
paper, an optimal number of clusters was determined based on three 
different methods, which are elbow, average silhouette, and gap statistic 
methods (Zhang and Zhu, 2012), through using two functions in R 
programming, which are fviz_nbclust() and NbClust() (Hartigan, 1979). 
By using these functions, the optimal number of clusters determines the 
best partition selected. For further details about these methods, the 
reader can see Hartigan (1979) and Kaufman and Rousseeuw (2009). 
The C-Means algorithm which was used in this study can be summarized 
as Pseudo-code in Table 1. 

2.3. Hybrid fuzzy time series model 

The algorithm of this study was adopted from the arithmetic pro-
cesses proposed by Tsaur (Alyousifi et al., 2018). The flow chart of the 
calculations in the proposed model is shown in Fig. 1. 

The steps of the model’s algorithm are as follows based on Fig. 1. 

Step 1. Define the universe of discourse (U). 
Step 2. Divided U into subintervals based on the C-Means Clustering 

technique. 
Step 3. Define the fuzzy sets Ai for each time series 

observation on U. A fuzzy set Ai (i = 1,2,…, n) can be defined 
as shown in Eq. 3. 

Ai =
fAi (u1)

u1
+

fAi (u2)

u2
+ …+

fAi (un)

un
(3)  

where fAi is the membership function of Ai; fAi :U→[0, 1].

Table 1 
Pseudo-code of C-Means clustering algorithm with an optimal number of 
clusters.  

Input: Ci.e, the number of clusters and the set of points (x1,x2 ,….,xk).

1. Choose an optimal number of clusters (C) using fviz_nbclust () and NbClust () R 
functions and obtain the data points.  

2. Place the centroids c1, c2, …, ck.

3. For each data point xi: 
- Find the nearest centroid (c1, c2, …, ck) 
- Assign the point to that cluster.  

4. 
Update {xi} to minimize SS(Ck) =

∑k

i=1

∑

xi∈Ck

(xi − xk)
2
, Cis the  

cluster, xi design a data point belonging tothe cluster Ckandxk 

is the mean value of the points assigned to the cluster Ck.  

5. For each cluster j = 1..k - new centroid = mean of all points assigned to that 
cluster.  

6. Repeat steps 3,4 and 5 until convergence or until the end of a fixed number of 
iterations. 

End  

Fig. 1. Flowchart for the hybrid model.  
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fAi (ur) ∈ [0,1] and 1 ≤ r ≤ n. 
Step 4. Fuzzify the actual values of the time series into fuzzy numbers 

based on the maximum membership value in accordance with the in-
tervals in Step 2. 

Step 5. Establish the fuzzy logical relationships (FLRs) and determine 
fuzzy logical relation groups (FLRGs). 

Step 6. Create the Markov transition probability matrix based on 
FLRGs. The matrix P is Pn×n, and Pij is transition probability 
from state Ai to state Aj. Pij can be calculated as shown in Eq. 
(4). 

Pij =
Nij

Ni.
, i, j = 1, 2,…, n (4)  

where Nij is the frequencies and Ni. =
∑n

j=1Nij is the total frequencies. 
Step 7. Calculate the forecasted values by considering the following 

two cases. 
Case 1. If the FLRG of A2 is one-to-one, i.e., Ai→Ak , with Pik = 1 and 

Pik = 0, j ∕= k) then the forecasting of F(t) is mk , the midpoint of uk, k =

1, 2.. n, which is determined by using Eq. (5). 

F (t + 1) = mk Pik = mk (5) 

Case 2. If the FLRG of Ai is one-to-many, i.e., Ai→A1,A2,…An, i = 1,2,
…, n). Thus, if thestate is Ai for the actual value Y(t) at time t, the 
forecasted value F(t + 1) is calculated according to Eq. (6). 

F (t+1)=m1pi1+m1p12+…+mi− 1pi(i− 1)+Y(t)pii+mi+1pi(i+1)+…+mnpin

(6) 

where m1, m2, …, mnare the midpoint of u1, u2, …,

un and mi replaced by Y(t). 
Step 8. Adjust the predicted values by adding the differences of 

actual values Y(t). The adjusted forecasted values can be written by 
Eq. 7. 

F̂ (t+ 1) = F (t+ 1)+ diff (Y(t)) (7)  

3. Proposed model and algorithm 

The proposed model involved two key aspects which were applied to 
approach the lengths of intervals and proper weights on time series data 
to increase the forecasting accuracy. First, the original historical data 
were used instead of the variations of historical data in the forecasting 
model. Second, the C-Means algorithm was developed to adjust the in-
terval lengths to obtain the optimal partition. The proposed model al-
gorithm was implemented using two datasets to verify the proposed 
model’s effectiveness. First, the algorithm of the proposed model was 
implemented for TAIEX data, and its results were provided for each step. 
A detailed explanation of the proposed model is given in subsection 3.1. 
Second, the algorithm is implemented for the PM10 concentration (the 
results of each step are not shown here due to length limitations). The 
best model is selected based on the smallest value found of the statistical 
criteria presented in Section 3.2. 

3.1. Implementation of the hybrid forecasting model 

The algorithm of the proposed model was applied to the time series 
of the TAIEX data from the 5th of January 2015 to the 30th of May 2015 
to forecast the TAIEX. The model was implemented, and its results were 
provided for each step. A time series plot of the TAIEX data is given in 
Supplementary Figure S1. To validate the proposed model, the TAIEX 
data was used to evaluate the performance and compare it with existing 
models. The steps of the model algorithm are given below. 

Step 1. Define the universe of discourse U from TAIEX data. Since 
U = [Dmin − D1, Dmax + D2],

then, U = [9048.34 − 48.34, 9973.12+26.88], thus, U
= [9000, 10000]

. 
Step 2. Partitioning the universe of discourse. The C-Means clus-

tering method was applied for partitioning the universe of discourse U as 
shown in Supplementary Figure S2, where each partition has a different 
length. Particularly, the U has been partitioned into 19 intervals with 
unequal lengths as follows.  

u1= [9000, 9088.907]  u2= [9088.907, 9212.099]  
u3= [9212.099, 9366.364]  u4= [9366.364, 9432.377]  
u5= [9432.377, 9466.752]  u6= [9466.752, 9500.015]  
u7= [9500.015, 9512.45]  u8= [9512.45, 9529.959]  
u9= [9529.959, 9566.25]  u10= [9566.25, 9579.918]  
u11= [9579.92, 9605.19]  u12= [9605.19, 9611.19]  
u13= [9611.19, 9615.54]  u14= [9615.54, 9618.41]  
u15= [9618.41, 9623.735]  u16= [9623.735, 9644.033]  
u17= [9644.033, 9688.38]  u18= [9688.38, 9752.852]  
u19= [9752.852, 10000]    

Step 3. Define fuzzy sets. The C-Means method of partitioning the 
universe of discourse U is demonstrated here. Fuzzy sets Ai, (i = 1,
2, .., n) were determined based on the interval ui that has 
already formed using the C-Means method in the previous step with the 
membership function based on Eq. (3) as follows (refer to Eq. 8). 

Ai =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
u1

+
0.5
u2

i = 1

0.5
u1

+
1
u2

+
0.5
u3

2 ≤ i ≤ n − 1

0.5
un− 1

+
1
un

i = n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8) 

Supplementary Table S1 reveals the fuzzy sets Ai.

A greater value of i indicates that the fuzzy set of TAIEX values will 
move from the lowest to the highest fuzzy set of TAIEX values. 

Step 4. Fuzzify the dataset into linguistic values. Transform the 
TAIEX data into fuzzy numbers and determine the fuzzy logic relation-
ships (FLRs) as can be observed in Table 2, which reveals the alterations 
of the observed TAIEX to be the linguistic values. Since 
u1 has the maximum membership degree in fuzzy set A1,

observation 9274.11 is transferred to fuzzy set A2,

and 9048.34 is transferred to fuzzy set A1, meaning that all 
data of TAIEX are fuzzified similarly. The TAIEX values and the corre-
sponding fuzzified values found from the fuzzification process are re-
ported in Table 2. 

Step 5. Establish fuzzy logical relationship groups (FLRGs) and the 
frequency (account) matrix of the fuzzy relation between observations. 
This step shows that the FLRs may be grouped into fuzzy logic rela-
tionship groups (FLRGs). 

The groups given in Table 3 represent eighteen groups of the fuzzy 
time series found with multiple FLRs. Moreover, it can be seen from 
Table 3 that a transition frequency matrix or frequency matrix (count) of 

Table 2 
TAIEX values expressed as fuzzy numbers.  

N Date TAIEX Value linguistic values Fuzzy set relationships 

1 2015/1/5 9274.11 A2 – 
2 2015/1/6 9048.34 A1 A2→A1  
3 2015/1/7 9080.09 A2 A1→A2  
4 2015/1/8 9238.03 A2 A2→A2  
5 2015/1/9 9215.58 A2 A2→A2  
6 2015/1/12 9178.3 A2 A2→A2  
7 2015/1/13 9231.8 A2 A2→A2  
: : : : : 
: : : : : 
94 2015/5/27 9693.54 A17 A15→A17  
95 2015/5/28 9712.84 A17 A17→A17  
96 2015/5/29 9701.07 A17 A17→A17   
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the fuzzy relationship between observations can be determined, which 
can be represented as a count matrix N19×19, as presented in Supple-
mentary Figure S3. 

Step 6. Assign the Markov weights based on the matrix of fre-
quencies from step 5 by using Eq. (4). By defining 19 states for each of 
the fuzzy sets, matrix P19×19 is produced. Given the number of transi-
tions of the fuzzy values and the elements of Markov weights per group, 
the obtained Markov weights based on FLRGs as shown in Table 3. The 
Markov weights found can be used for establishing the transition 
probability matrix P19×19, which can be used for calculating the fore-
casting values in the next step. Then, the transition process diagram can 
be established using the weights to visualize the Markov weighted ma-
trix (given in Eq. 9), as shown in Supplementary Figure S4. 

P =

⎡

⎢
⎣

p11
p21

p12
p22

⋯ p1 19
p2 19

⋮ ⋱ ⋮
p19 1 p19 2 ⋯ p19 19

⎤

⎥
⎦ (9)  

where pij =
Nij
Ni.

is the transition probability from state Ai to Aj. 
For example, in the case of FLRG, A1 →A1, A2, A18. Then, N11 

= 4, N12 = 2, N1 18 = 2 and N1. = 8.Thus, p11 = 0.5, p12 =

0.25 and p1 18 = 0.25; otherwise, p1j = 0. Similarly, defining fuzzy 
sets, the fuzzy logical relationships, the fuzzy logical relationship 
groups, and Markov weights can be found using the other partition 
methods considered in this study. 

Step 7. Forecast values were calculated by using Eqs. (4) or (5) based 
on Markov weights. For example, the forecast value for the next day (6/ 
1/2015) was calculated by using Eq. (5) as presented in Eq. 10. 

Ft+1 (2015/1/6) = m1 p11 + Y(t) p12 +m3 p13 + 4 p14 +m5 p15  

Ft+1 (2015/1/6) = (9044.453)(1/10)+ (9274.11)(8/10)+ (9289.231)(1/10)
(10)  

Ft+1 (2015/1/6) = 9252.657 

In the same way, the forecast values were calculated based on the 
obtained results of each partition method in order to fit the optimum 
partition method that provides the best results. 

Step 8. The forecasted values were adjusted based on Eq. (7). For 
example, the adjusted values F̂ can be calculated as follows. 

F̂ (2015/1/6) = Ft+1 (2015/1/6) ∓ |diff (Y(t), m2)| =

9252.657 − 123.607 = 9129.05 
Similarly, the other forecasted values were calculated. 

3.2. Model evaluation 

It is important to check the forecasting performance to identify the 
best model with the smallest error. Several statistical tests can be 
considered to measure model validation. The three statistical criteria 
used in this study in order to validate the forecasting accuracy of the 
proposed model are MAPE, RMSE, and Thiels’ U-statistics, which are 
given in Eqs. (11–13). 

MAPE =
1
N

∑N

i=1

⃒
⃒
⃒
⃒
Yi − Fi

Yi

⃒
⃒
⃒
⃒× 100 (11)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Yi − Fi)

2

N

√
√
√
√
√

(12)  

Theil′ sU =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Yi − Fi)

2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
Yi

2

√

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
Fi

2

√ (13)  

where Yi is the real data, Fi are the forecasted values and N is the total 
number of observations. These statistical criteria are widely used in the 
literature, which can be calculated directly from real data and predicted 
values, rather than dealing with unknown parameters that must be 
estimated. The statistical calculations measure the residual errors with 
the smallest value and are selected as the best model for prediction. 

4. Experimental results 

The proposed model was implemented to forecast the daily TAIEX 
data from 1st of May 2015–31st of December 2015, and also addressed 
other forecasting issues, such as the empirical data for weekly PM10 
concentrations from 1st of January 2012–31st of December 2014 
collected from Melaka, Malaysia. These two datasets were also used to 
conduct a comparative study. To validate the proposed model, both 
datasets were used to evaluate the model performance and compare it 
with existing models. 

4.1. TAIEX forecasting 

Table 4 and Fig. 2 show a comparison between the proposed model 
and some existing fuzzy time series models proposed by Chen’s model 
(Chen, 1996), Sliva2 et al.’s model (Silva et al., 2017), Yu’s model (Yu, 
2005), Cheng’s model (Cheng et al., 2006), Severiano et al.’s model 
(Severiano et al., 2017), Sliva et al.’s model (Silva et al., 2019), Sadaei 
et al.’s model (Sadaei et al., 2014), and Tsuar’s model (Tsaur, 2012) to 

Table 3 
Fuzzy logical relationship groups and Markov weighted FTS based on the C- 
Means method for TAIEX data.  

Fuzzy logical 
relationships Group 
(FLRGs) 

Markov weight elements for each group  

A1 → (2)A1, A2, A18 
A2→ A1, (8)A2, A3 
A3 → (2)A3, A4, A5 
A4 → A3, A4, A5, A7 
A5 → A4, A5, A6, A8 
A6 → A8, A9 
A7 → A4, A5, A7, A8 
A8 → A7,A8,A12, A13, 
A15, A16 
A9 → (2)A8, A10, A12, 
A14 
A10 → A7, A9, A12, 
A15, A17 
A11 → A12 
A12 → A10, A11, A12, 
(2)A14, A15, A18 
A13 → A10 
A14 → A6, A9, A10, 
A16 
A15 → A8, A15, (2)A16, 
A17 
A16 → A9, A15, (2)A17 
A17 → A10, (2)A12, 
A14, (10)A17, A18 
A18 → A1, (2)A17, (5) 
A18   

A1→ A1(0.5), A18(0.25), A2(0.25) 
A2 → A1(0.1), A2(0.8), A3(0.1) 
A3 → A3(0.5), A4(0.25), A5(0.25) 
A4 → A3(0.25), A4(0.25), A5(0.25), A7(0.25) 
A5 → A4(0.25), A5(0.25), A6(0.25), A8(0.25) 
A6 → A8(0.5), A9(0.5) 
A7 → A4(0.25), A5(0.25), A7(0.25), A8(0.25) 
A8 → A12(0.143), A13(0.143), A15(0.143), A16 
(0.286), A7(0.143), A8(0.143) 
A9 → A10(0.2), A12(0.2), A14(0.2), A8(0.4) 
A10 → A12(0.2), A15(0.2), A17(0.2), A7(0.2), A9(0.2) 
A11 → A12(1.0) 
A12 → A10(0.143), A11(0.143), A12(0.143), A14 
(0.28), A15(0.143), A18(0.143) 
A13 → A10(1.0) 
A14 → A10(0.25), A16(0.25), A6(0.25), A9(0.25) 
A15 → A15(0.2), A16(0.4), A17(0.2), A8(0.2) 
A16 →A 15(0.2), A17(0.4), A9(0.4) 
A17 → A10(0.067), A12(0.133), A14(0.067), A17 
(0.66), A18(0.067) 
A18→ A1(0.125), A17(0.25), A18(0.625)  
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the TAIEX data. 
It can be seen from Table 4 that the hybrid model outperforms the 

compared models, producing better results with the smallest error 
values of RMSE, MAPE and U-statistics than the error values of the 
existing models. The hybrid model provides the most accurate predic-
tion and was consistent in all statistical criteria, as shown in Table 4. The 
RMSE, MAPE and U-statistics are 66.84, 0.51, and 1.03, respectively. 
They indicate that the proposed model is adequate and capable of 
providing reasonable prediction accuracy. Moreover, the results are 
supported by Fig. 2(a) and (b) as the original TAIEX compared to the 
predicted values based on the hybrid model are quite similar compared 
to the other models. 

4.2. Air pollution forecasting 

The algorithm of the model was also applied to training and test data 
sets of PM10 concentrations to evaluate the performance of the model 
and compare it with some of the existing fuzzy time series models to 
further validate the proposed hybrid model. To implement the algorithm 
of the proposed model, similar to Section 3.1, it was started by defining 
the universe of discourse U from PM10 data and then applying the C- 
Means clustering method. Based on the C-Means clustering method, the 
universe of discourse was divided into 25 intervals of unequal length. 
The found intervals were used to form the fuzzy logic relation group and 
assigned Markov weights. Due to the length limitation of the paper, the 
results of each step are not presented here. Therefore, only the final 
results and the comparative study between the proposed model and the 
existing models are presented. As can be seen in Table 5, the proposed 
model produces the smallest values of the applied statistical criteria 
compared to the existing models. This shows that the model outperforms 
the existing models, which means that the proposed hybrid model is a 
better option for predicting PM10 concentration. 

It can be seen from Fig. 3(a) that the proposed model performs 
significantly well with negligible errors (compared to other models), 

indicating that the predicted values based on the hybrid model are quite 
similar to the original data of PM10. Moreover, Fig. 3(b) demonstrates 
the results of the comparison between the proposed model and some 
existing models using the training dataset of PM10 concentrations. It was 
found that the model predicted the PM10 data are well within the 
acceptable levels and produced the smallest error. The hybrid model 
produces the most accurate prediction with respect to all statistical 
criteria as shown in Table 5. For the training data, RMSE, MAPE and U- 
statistics are 7.55, 6.83 and 0.55, respectively. Similarly, the results for 
the test data are 5.01, 7.25 and 0.45, respectively. Moreover, the pro-
posed model outperformed all the existing models. Moreover, the model 
showed its superiority compared to the other models. This implies that 
the proposed model is an improved option for predicting air pollution 
events. Similarly, Fig. 3(c) shows a comparison between the proposed 
model and some existing models using the test data set of PM10 con-
centrations, indicating that the predicted values based on the hybrid 
model are quite similar to the original data of PM10, indicating that the 
proposed model is superior to the existing models. The purpose of PM10 
prediction is to act as an early warning system for air quality control and 
management to keep air quality within the specified guidelines. 

Table 4 
Statistical criteria of the Hybrid model and some fuzzy time series models using 
the TAIEX.   

Model RMSE MAPE U-Statistic  

1 Chen’s model  150.24  1.37  2.32  
2 Yu’s model  145.79  1.25  2.26  
3 Cheng’s model  146.92  1.33  2.27  
4 Sliva et al.’s model  133.49  1.02  2.06  
5 Tsuar’s model  136.09  1.19  2.11  
6 Sadaei et al.’s  158.79  1.34  2.46  
7 Hybrid Model  66.84  0.51  1.03  

Fig. 2. (a) comparison of original TAIEX vs the forecasted values based on the hybrid model; and (b) comparison of the model with some existing FTS models.  

Table 5 
Statistical criteria of the hybrid model and eight fuzzy time series models using 
the training and testing PM10 data.   

Model Using training dataset Using testing dataset 

RMSE MAPE U- 
Statistic 

RMSE MAPE U- 
Statistic  

1 Chen’s 
model  

18.04  14.67  1.32  9.12  14.26  0.80  

2 Sliva2 
et al.’s 
model  

16.10  17.79  1.18  10.23  18.68  0.89  

3 Yu’s model  17.06  9.74  1.25  8.87  14.20  0.78  
4 Cheng’s 

model  
16.70  10.88  1.22  8.67  13.69  0.76  

5 Severiano 
et al.’s  

16.10  17.79  1.18  10.23  18.68  0.89  

6 Sliva et al.’s 
model  

15.67  9.28  1.14  8.90  13.92  0.78  

7 Sadaei 
et al.’s  

17.06  9.82  1.25  8.73  13.99  0.77  

8 Tsuar’s 
model  

17.07  9.40  1.25  8.66  13.86  0.76  

9 Hybrid 
Model  

7.55  6.83  0.55  5.01  7.25  0.45  
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5. Conclusions 

A novel hybrid fuzzy time series model was proposed, which was 
implemented for TAIEX and PM10 concentration prediction. The model 
can also be implemented for many types of time series data, especially 
for non-seasonal data. Hybridization of the model has contributed in 
producing adequate partitioning and improved the model accuracy 
accordingly. The proposed model was investigated by comparing it with 
several FTS models known in the literature. The comparison has clearly 
shown the ability of the model to avoid the arbitrary selection of in-
tervals and to deal with recurrent observations, which significantly 
improves the model accuracy. The proposed prediction method is a 
promising method to improve prediction accuracy. The experimental 
results showed that the hybrid model obtains higher prediction accuracy 
compared to the existing FTS model. Moreover, the empirical results 
demonstrated that the high-order FTS model outperformed the first- 
order FTS model with a lower prediction error. For TAIEX and air 
pollution prediction, the proposed model has achieved superior pre-
diction accuracy compared to the conventional and advanced time series 
methods proposed in the literature. Moreover, the prediction values 
found by the model show its flexibility in FTS for air pollution predic-
tion. In general, the proposed model has the flexibility to be applied to 
many types of time series data. In future studies, a comparative study 
using other partitioning methods such as automatic clustering and fuzzy 

K-medoid clustering (FKM) in combination with the FTSMC model will 
be conducted to investigate the method which is more powerful to 
improve the model performance and then to achieve high prediction 
accuracy. 
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