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Abstract
A major challenge in simulating chemical reaction processes is integrating the 
stiff systems of Ordinary Differential Equations (ODEs) describing the chemi-
cal reactions due to stiffness. Thus, it would be of interest to search systematically 
for stiff solvers that are close to optimal for such problems. This paper presents an 
implicit 3-Point Block Backward Differentiation Formula with one off-step point 
(3POBBDF) for the solutions of first-order stiff chemical reaction problems. In 
deriving the method, the Lagrange polynomial was adopted as the basis function. 
The paper further analyses the basic properties of the 3POBBDF which include 
order of accuracy, consistence, zero-stability, and convergence. The stability region 
as well as the interval of instability of the method was also computed. To demon-
strate the accuracy of the proposed approach, some famous stiff chemical reaction 
problems such as Robertson problem and Chemical AKZO were solved, and the 
results obtained were compared with those of some existing methods. The results 
obtained clearly show that the 3POBBDF performs better than the existing methods 
with which we compared our results.
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1 Introduction

Most chemical reaction problems have been known to be stiff in nature, little wonder 
they have attracted the attention of mathematicians recently. According to [1, 2], 
chemical reactions in alive species, atmospheric phenomena, mechanics and molec-
ular dynamics, and chemical kinetics, extensively describe the stiff systems. If the 
time constants fluctuate significantly in magnitude, then the system is known as stiff. 
The time constants here refer to the rates of decay of perturbations [3]. If a system 
diverges considerably in terms of time constants, we must use smaller time steps to 
deal with expeditiously decaying terms.

In this paper, an implicit 3-Point Block Backward Differentiation Formula with 
one off-step point (3POBBDF) is derived for the solutions of stiff chemical reaction 
problems of the form,

where f  is assumed to be continuous and satisfies the existence and uniqueness 
theorem.

For Ordinary Differential Equations (ODEs) such as non-linear or linear, stiff or 
non-stiff ODEs, different numerical methods have been developed [4–6]. It must be 
noted that employing the wrong method for a model can result in a slow or incorrect 
solution [7]. Problems with the form (1.1) are generally divided into two catego-
ries. The first category is a non-stiff ODEs, in which explicit methods are employed 
together with certain error control. Another category is stiff ODEs. [8] was the first 
to use the term "stiff" in a scenario requiring chemical kinetics. The only way to find 
answers to stiff problems is to employ implicit methods because explicit methods 
are slow and sometimes fail to deliver an accurate solution [9]. The Backward Dif-
ferentiation Formula (BDF) is one of the well-known classes of implicit methods for 
finding the solution of stiff ODEs. Developing a mathematical model for stiff ODEs 
considers a few factors such as selection of step size, stability, accuracy, and compu-
tational cost [10, 11].

Stiffness is defined in different ways in literature as it does not have a specific 
definition. Equation (1.1) is said to be stiff according to Lambert [12] if the Jacobian 
matrix �f

�y
 for the eigenvalues �t(x) satisfies these conditions:

 where �t are the eigenvalues and the ratio maxt=1,2,…,m|Re(�t)|
mint=1,2,…,m|Re(�t)| is called stiffness ratio.

Many studies have been directed into the improvement of multistep block meth-
ods for the solution of (1.1). Several studies have recently focused on improving 
the performance of different forms of multistep block methods encompassing esti-
mated solution accuracy and computational time; see [10, 13–19]. While several 
block methods (based on Adams formulas) were proposed previously emphasizing 

(1.1)y�(x) = f (x, y), y(a) = y0, x ∈ [a, b]

Re
(
𝜆t(x)

)
< 0, t = 1, 2,… , n

max
t
|Re

(
𝜆t(x)

)
| ≫ min

t
|Re

(
𝜆t(x)

)
|
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ODEs of non-stiff systems, the challenge has always been how to find an appropriate 
implicit method for solving stiff ODEs that have A-stability properties. Since block 
methods’ most serious flaw appears to be their ability to sustain stability [20], it is 
necessary to develop algorithms with suitable stability properties.

Gear [21] initially introduced the BDF, which is known to be efficient in han-
dling complex stiff ODE problems. This BDF approach has been extended in papers 
such as [15, 22–25]. Single-step and multi-step block techniques are the two types 
of block methods. Rosser [26] introduced the standard single-step method known 
as the Runge–Kutta method. [27] explored the single-step implicit A-stable r-block 
approach. [28] developed a fourth-order block approach for multistep methods that 
can be used as a predictor–corrector method. [29] proposed a Modified extended 
BDF method for numerical solutions of stiff ODEs. [15] devised a method for solv-
ing first-order ODEs using 2-point and 3-point block BDF. [30] developed the 5th 
order 2-Point Block Backward Differentiation Formula to improve the existing 
BBDF. Authors in articles [31–33] also improved the BBDF method by extending 
the method and adding future points. Many researchers have explored other block 
methods such as [34] who developed a seven-step block method for the solution of 
first order IVPs in ODEs and [35] considered the approximate solutions to third-
order boundary value problems (BVPs) of ODEs.

Despite having many advantages, the block method also possessed a major set-
back which pointed out that the order of interpolation points must not exceed the 
order of the differential equations [36, 37]. Because of this setback, addition of off-
step points in the block were introduced and named as hybrid method. Hybrid meth-
ods are highly efficient and have been reported to circumvent the “Dahlquist Zero-
Stability Barrier” condition by introducing function evaluation at off-step points 
which takes some time in its development but provides better approximation than 
two conventional methods (Runge–Kutta and linear multistep methods) [13, 36]. 
[38] proposed function evaluation at an off-step and named as “Hybrid” method. 
[9] derived higher-order method with more than one off-step point. [39] were the 
first who introduce BDF methods with some off-step points. The hybrid Obrechkof 
BDF methods with some off-step points were presented in [40]. Hybrid Block Sec-
ond Derivative Backward Differentiation Formula (HBSDBDF) is proposed by [41] 
which provides simultaneous solutions of IVPs in each block without any predictor 
formula. [42] formulated Block Backward Differentiation Formula with two off-step 
points (BBDFO(6)). [23] have studied block methods with various off-step points. 
[43–45] have described a closely related methods that involves off-step points. In 
modifying the selection of the most acceptable off-step points, a similar method is 
used from [46, 47].

Motivated from the above literature, this study is aimed at developing a 3-Point 
Block Backward Differentiation Formula with one off-step point (3POBBDF) using 
Lagrange polynomials as basis function to solve chemical reactions problems com-
prising stiff first order ODEs. The method will be employed in solving stiff chemi-
cal reaction problems of the form (1.1). Several points have been examined for the 
selection of off-step points and hence it was concluded that selecting the points 
where the step is halved will lead to zero-stable formulae. Compared to the meth-
ods developed by Khalsaraei and Molayi [48], and Ismail [49], the advantage of the 
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proposed method is that the solutions are approximated with off-step points con-
currently and provide better accuracy. The organization of the paper is as follow; 
Section 2 briefly describes the formulation of the method. Analysis of convergence 
properties is examined in Section 3. Section 4 elaborates the implementation of the 
derived method. List of tested problems with results are presented in section 5. Sec-
tion 6 includes discussions of the results. Graphical representation of the results is 
displayed in section  7. consists of Numerical problems with their results respec-
tively. Furthermore, Sections 8 describes the conclusions.

2  Derivation of the 3POBBDF

This section consists of a detailed explanation of how the proposed 3POBBDF for 
solving (1.1) is formulated. The two starting values, xn−1 and xn of identical step size 
which is fixed as h = xn+1 − xn and one off-step point at x

n+
5

2

 is considered, as shown 
in Fig. 1.

The interval [a, b] in (1.1) is split into a sequence of blocks in a 3-point block 
method (see Fig. 1). For finding out the solution of (1.1), yn−1 and yn are used as the 
values of previous block to evaluate the future points at yn+1,yn+2 , yn+ 5

2

 and yn+3 with 
constant step size simultaneously. The off-step point y

n+
5

2

 is added to all three formu-
las to increase the accuracy. The 3POBBDF we shall derive is a k-step Linear Multi-
step Method (LMM) defined according to [12] as,

h represents the step size, �j and �j are the unknown constants that needs to be 
decided and k indicates the number of steps of the method. Presuming that �j ≠ 0 , 
and both �0 and �0 are not equal to zero. The LMM (2.1) is extended by adding an 
off-step point to generate a new form of LMM given by,

(2.1)
k∑

j=0

�jyn+j = h

k∑

j=0

�j fn+j,

Fig. 1  3-Point Block Backward Differentiation Formula with one off-step point
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The function fn+T in Eq.  (2.2) is evaluated by using Lagrange interpolation 
polynomial (P(x)) with interpolation points such as ( xn−1, yn−1 ), ( xn, yn ), 
( xn+1, yn+1 ), ( xn+2, yn+2 ), ( xn+ 5

2

, y
n+

5

2

 ) and ( xn+3, yn+3 ). The process is given as,

whereas,

Expanding the polynomial Lj by substituting s = x−xn+3

h
 implying x = sh + xn+3 . 

The interpolating polynomial is further differentiated with respect to s provides 
the coefficient values of � and � as presented in Table 1.

Furthermore, (2.2) is shaped up after substituting all values taken from 
Table 1. Hence, the corresponding formulas for the points yn+1, yn+2, yn+5∕2, and 
yn+3 take the following form:

Equation  (2.4) is the 3POBBDF for the solution of stiff chemical reaction 
problems of the form (1.1).

(2.2)
4∑

j=0

�j−1yn+(j−1) + � 5

2

y 5

2

= h�T ,T fn+T , forT = 1, 2,
5

2
, 3

(2.3)P(x) =
∑4

j=0
Lj(x)f (xn+3−j),

Lj =

4∏

i = 0

i ≠ j

x − xn+3−i

xn+3−j − xn+3−i
fori = 0,

1

2
, 1, 2, 3, 4

(2.4)

yn+1 =
3

56
yn−1 −

3

5
yn + 3yn+2 −

64

35
y
n+

5

2

+
3

8
yn+3 −

3

2
hfn+1,

yn+2 = −
1

98
yn−1 +

3

35
yn −

3

7
yn+1 +

384

245
y
n+

5

2

−
3

14
yn+3 −

6

7
hfn+2,

y
n+

5

2

= −
75

9088
yn−1 +

147

2272
yn −

1225

4544
yn+1 +

3675

2272
yn+2 −

3675

9088

yn+3 +
105

142
hf

n+
5

2

yn+3 =
3

343
yn−1 −

16

245
yn +

12

49
yn+1 −

48

49

yn+2 +
3072

1715
y
n+

5

2

+
12

49
hfn+3.

Table 1  Coefficients of 
3POBBDF

�−1 �0 �1 �2 � 5

2

�3 �T ,T

y
n+1 −

3

56

3

5
1 −3 64

35
−

3

8

3

2

y
n+2

1

98
−

3

35

3

7
1 −

384

245

3

14

6

7
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5

2

75

9088
−

147

2272

1225

4544
−

3675

2272
1 3675

9088
−

105

142

y
n+3 −

3

343

16

245
−

12

49

48

49
−

3072

1715
1 −

12

49
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3  Analysis of basic properties of the 3POBBDF

The following section comprises the analysis of basic properties of the proposed 
method. These properties include order, consistency, zero-stability and convergence. 
The region of absolute stability of the method shall also be determined.

3.1  Order and error constant of the method

Definition 3.1 (Order and Error Constant)
The LMM (2.1) associated with the linear difference operator is said to be of 

order p if C1 = C2 = … = Cp = 0 and Cp+1 ≠ 0 . The term Cp+1 ≠ 0 is called the 
error constant of the method

According to [12] and [50], the local truncation error related with (2.1), for determining 
the order and error constant of the proposed method is well-defined by the linear differ-
ence operator L(y(x)) as,

The function y(x + Th) with its derivative y�(x + Th) are expanded and collecting 
terms in (3.1) will be obtained such as,

On the application of Eq. (3.2) on 3POBBDF derived in Eq. (2.4) using the coef-
ficients presented in Table 1, we obtain

As a result, the error constant of the proposed method is obtained as

(3.1)L(y(x)) =

k+s−1∑

j=0

(aj−1y(x + Th) − h�T ,Ty(x + Th))

(3.2)L
[
y(x);h

]
= C0y(x) + C1y

�(x) + ... + Cqh
qy(q)(x) + .…

C0 =

k+s−1∑

j=0

�j−(k−1),T = [0000]T ,C1 =

k+s−1∑

j=0

t�j−(k−1),T − �T ,T = [0000]T ,

C2 =

k+s−1∑

j=0

t2

2!
�j−(k−1),T − T�T ,T

= [0000]T , ⋮ C5 =

k+s−1∑

j=0

t5

5!
�j−(k−1),T −

(T)4

4!
�
T ,T

= [0000]T ,

(3.3)

C6 =

k+s−1∑

j=0

t6

6!
�j−(k−1),T −

(T)5

5!
�
T ,T

= [
1

80
−

1

280

21

6250
−

1

245
]
T

≠ [0000]T
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According to Definition 3.1, c0 = c1 = … = c5 = [0000]T . The term c6 represents 
the error constant. Therefore, this can be demonstrated that the proposed method is of 
order five.

3.1.1  Consistency of the method

Definition 3.2 (Consistency)
The LMM (2.1) is said to be consistent if it is of order p ≥ 1.

It is therefore clear that the 3POBBDF is consistent since it has order p = 5 which satis-
fies Definition 3.2

3.1.2  Zero‑stability of the method

Definition 3.3 (Zero-stable)
If no root of the characteristic polynomial has a modulus greater than one and 

every root with modulus one is simple, then LMM (2.2) is said to be zero-stable

To be a convergent method, zero-stability is one of the main criteria which will be dis-
cussed here. [13] proposed the scalar test to determine the stability of the method (2.4) 
as

where λ represents the complex constant with Re(λ) < 0. Equation  (3.4) is substi-
tuted in Eq. (2.4), therefore it precedes as,

The matrix is then created by inscribing Eq. (3.5) into the matrix form as follows:

C6 =

⎡
⎢
⎢
⎢
⎢⎣

1

80

−
1

280
21

6250

−
1

245

⎤
⎥
⎥
⎥
⎥⎦

.

(3.4)y� = 𝜆y, 𝜆 < 0,

(3.5)yn+1 =
3

56
yn−1 −

3

5
yn + 3yn+2 −

64

35
y
n+

5

2

+
3

8
yn+3 −

3

2
h�yn+1,

yn+2 = −
1

98
yn−1 +

3

35
yn −

3

7
yn+1 +

384

245
y
n+

5

2

−
3

14
yn+3 −

6

7
h�yn+2,

y
n+

5

2

= −
75

9088
yn−1 +

147

2272
yn −

1225

4544
yn+1 +

3675

2272
yn+2 −

3675

9088
yn+3 +

105

142
h�y

n+
5

2

,

yn+3 =
3

343
yn−1 −

16

245
yn +

12

49
yn+1 −

48

49
yn+2 +

3072

1715
y
n+

5

2

+
12

49
h�yn+3
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which is equivalent to,

C and D are appropriately selected m × m matrix coefficients, 

Yn =
[
yn+3, yn+ 5

2

, yn+2, y
n+1

]T
 and Yn−1 =

[
yn, yn− 1

2

, yn−1, yn−2

]T
 . The stability poly-

nomial R(t,H) correlated with the method in (2.2) is defined by

Based on the stability polynomial in (3.7), the zero-stability is obtained by 
replacing H = h� = 0 into (3.7), this yield,

Solving R(t, 0) = 0 , gives the roots for t  , as t = 0, 0,−0.000186375, 0.999767 . 
Since all the roots lie within |t| ≤ 1 described in Definition 4.1; hence, it is con-
cluded that the method 3POBBDF is zero-stable.

3.1.3  Convergence of the method

Definition 3.4 (Convergence)
Consistency and zero-stability are required conditions for the LMM (2.1) to be 

convergent

Therefore, we conclude that the newly derived 3POBBDF is convergent since it is 
consistent and zero-stable.

3.1.4  Stability region of the method

Definition 3.5 (A-stable)
The term "A-stable" refers to a method that is stable for all λ in the left-half plane 

(Re(�) ≤ 0) . The stability region for A-stable method covers up the complete nega-
tive left-half plane

⎡
⎢
⎢
⎢
⎢⎣

−
3

8

64

35
−3 1 +

3

2
h�

3

14
−

384

245
1 +

6

7
h�

3

7
3675

9088
1 −

105

142
h� −

3675

2272

1225

4544

1 −
12

49
h� −

3072

1715

48

49
−

12

49

⎤
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢⎣

yn+3
y
n+

5

2

yn+2
yn+1

⎤
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢⎣

−
3

5
0

3

56
0

3

35
0 −

1

98
0

147

2272
0 −

75

9088
0

−
16

245
0

3

343
0

⎤
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢⎣

yn
y
n−

1

2

yn−1
yn−2

⎤
⎥
⎥
⎥⎦

,

(3.6)CYn = DYn−1,

R(t,H) = |Ct − D|,

(3.7)

R(t,H) =
−13977t2

79147250
+

44523Ht2

158294500
+

9H2
t
2

97412
−

2883852t3

344125
−

811134Ht
3

807625
−

15070599H2
t
3

39573625

−
2889H3

t
3

48706
+

41616t4

48706
−

179199Ht4

97412
+

159417H2
t
4

97412
−

40851H3
t
4

48706
+

810H4
t
4

3479
.

(3.8)R(t, 0) =
−13977t2

79147250
−

2883852t3

344125
+

41616t4

48706
.
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In this section, the stability region of the 3POBBDF(5) presented in Eq. (2.4) is 
plotted by using the stability polynomial given in (3.7). The boundary of the sta-
bility region is described by the set of points defined by t = ei�,0 ≤ � ≤ 2� . The 
root condition (|t| ≤ 1) of the stability polynomial must be tested at multiple grid 
points in order to determine the boundary of the stability region. Figure 2 shows 
the region of absolute stability for the system in (2.4).

It is observed from this figure that the stability region lies outside of the 
bounded region. Since most of the region is in the left half-plane therefore, 
according to Definition 3.5, the method is A-stable. Thus, it can be implied that 
the constructed 3POBBDF method is appropriate for solving stiff problems.

3.1.5  Comparison of stability regions

The stability region of the proposed 3POBBDF(5) is depicted in the Fig. 3 below, 
as opposed to the existing stability region of the Block Backward Differentiation 
Formula of Order 6 (BBDFO(6)) developed by [42]. On the complex h� plane, 
Fig.  3 illustrates the region including both methods, namely the 3POBBDF(5) 
and the BBDFO(6).

The interval of instability of the current 3POBBDF(5) and the BBDFO(6) 
[42] are then compared. The derived 3POBBDF(5) has a larger stability area, as 
shown in Table 2. This implies that the proposed 3POBBDF(5) is more computa-
tionally reliable than BBDFO(6) developed by [42].

4  Implementation and Algorithm of the 3POBBDF

This section discusses the implementation and algorithms of the proposed method.

Fig. 2  Stability region of 3POBBDF(5)
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4.1  Implementation of the 3POBBDF

By using Newton iteration, implementation of the 3POBBDF(5) method having one 
off-step is briefly mentioned in the generalized form. An increment notation is intro-
duced for stipulating the iteration. In which y(i+1)

n+1
 will represent the (i + 1) th iterative 

value of yn+1[51].
The main limitation for the implementation of the 3POBBDF(5) predominantly 

is that it is not self-starting. The back values are therefore calculated using the Euler 
method in this case.

By applying Newton’s iteration, (2.4) is solved and the number of iterations is 
limited to two. Newtons’ iteration for y(i+1)

(n+1)
 , y(i+1)

(n+2)
 , y(i+1)

(n+
5

2
)
 , y(i+1)

(n+3)
 points in the block 

takes the form

y
(i+1)

(n+1)
= y

(i)

n+1
−

F1y
(i)

n+1

F�
1
y
(i)

n+1

,

y
(i+1)

(n+2)
= y

(i)

n+2
−

F2y
(i)

n+2

F�
2
y
(i)

n+2

,

2 4 6 8 10
Real

-6

-4

-2

2

4

6

Imaginary

Fig. 3  Regions of Stability for 3POBBDF(5)and BBDFO(6)

Table 2  Comparison 
of instability region of 
3POBBDF(5) with BBDFO(6)

Methods Interval of Instability

3POBBDF(5) (0, 3.3375)
BBDFO(6) (0,10.05)
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where i = 0, 1.
We need to set the formula for yn+1

Let

where �1 represent the back values

Referring to (4.1), F′
1
 for yn+1 is also required which is,

So, the (4.1) for y(i+1)
n+1

 becomes,

Similarly, Newton iteration for yn+2,y
n+

5

2

, and yn+3

y
(i+1)

(n+
5

2
)
= y

(i)

n+
5

2

−

F 5

2

y
(i)

n+
5

2

F�

n+
5

2

y
(i)

n+
5

2

,

(4.1)y
(i+1)

(n+3)
= y

(i)

n+3
−

F3y
(i)

n+3

F�
3
y
(i)

n+3

.
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yn−1 −

3

5
yn + 3yn+2 −

64

35
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n+

5

2

+
3

8
yn+3 −
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Let e(i+1)
n+1

= y
(i+1)

n+1
− y

(i)

n+1
 be the increment value from i th to (i + 1) th iterations. 

Therefore, Eqs. (4.2)-(4.5) are then represented in matrix form as

Consequently, we will get the approximation values of yn+1, yn+2, yn+ 5
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4.1.1  Algorithm of the 3POBBDF in Code

This section will elaborate on how the developed code works with the proposed 
method. Initially, the code will begin with three points having one off-step block 
method. It is employed in PE(CE)r , the type where P and C stand for predictor and 
corrector correspondingly. Whereas E indicates the evaluation of function f .The 
power r = 2 shows the number of iterations as presented by [51] that is required 
to converge three points having one off-step block method corrector formulae. The 
algorithm of the proposed method in the code is given below,

Step 1: P = Predictor values yn+m for m = 1, 2,
5

2
, 3,

Step 2: E = Evaluate fn+m for m = 1, 2,
5

2
, 3,

Step 3: C = Corrector value yn+m for m = 1, 2,
5

2
, 3,

Step 4: E = Evaluate fn+m for m = 1, 2,
5

2
, 3.

5  Test problems

To test the reliability of the proposed 3POBBDF(5) method, some numerical results 
are obtained by applying the method on some well-known chemical reaction prob-
lems. Comparison is done with other multistep methods. The 3POBBDF(5) method 
has been coded in C +  + .

Problem 5.1 (Stiff Chemical Reaction Problem)
A chemistry problem with a stiff system is considered below,

with initial valuey1 = 0,y2 = 1 and y3 = 1 , 0 ≤ x ≤ 2.

This problem is solved using h = 10−5 for 3POBBDF(5). Table  3 shows the 
integration results for this problem at x = 2 . Compared with the formulas of 

y�
1
= −0.013y2 − 1000y1y2 − 2500y1y3,

y�
2
= −0.013y2 − 1000y1y2,

y�
3
= −2500y1y3,

Table 3  Numerical results of Problem 5.1

x yi Exact solution Absolute Error in 
3POBBDF(5)

Error in [48] Error in [49]

2.0 y1 0.00003616933169289 1.1E-17 0.61E − 16 0.82E − 10
y2 0.9815029948230 2.29E-11 0.53E − 10 0.61E − 05
y3 1.0184933882440 4.39E-11 0.74E − 10 0.57E − 05
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two-step hybrid method by Khalsaraei and Molayi [48], and Ismail’s method [49], 
the 3POBBDF(5) method provides more accurate results in terms of Absolute error.

Problem 5.2 (Chemical AKZO Nobel Problem)
The chemical AKZO noble problem is a chemical process given by a stiff system 

with six non-linear differential equations taken from [52] is considered. Mathemati-
cally the problem is described as,

The function F(y) is defined by

where ri and Fin are auxiliary variables given by

The initial vector y0 = (0.437, 0.00123, 0, 0, 0, 0.367)T.
Background of the Chemical AKZO Nobel Problem: This problem comes from 

AKZO Nobel Central Research in Arnhem, the Netherlands. It defines a chemical 
process that mixes MBT and CHA with a continuous supply of oxygen. The impor-
tant consequent species is CBS. AKZO Nobel problem contains following reaction 
equations,

dy

dx
= F(y), y(0) = y0, y ∈ ℝ

6, 0 ≤ x ≤ 180.

dy

dx
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2r1 + r2 − r3 − r4
1

2
r1 − r4 −

1

2
r5 + Fin

r1 − r2 + r3
−r2 + r3 − 2r4
−r2 − r3 + r5

−r5

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

r1 = k1y
4

1
y

1

2

2
, k1 = 18.7, r2 = k2y3y4k2 = 0.58,

r3 =
k2

K
y3y5K = 34.4, r4 = k3y1y

2

4
, k3 = 0.09,

r5 = k4y
2

6
y

1

2

2
, k4 = 0.42,

Fin = klA

(
p
(
O2

)

H
− y2

)
klA = 3.3p

(
O2

)
= 0.9H = 737,

2MBT +
1

2
O2

k1
→ MBTS + H2O

CBS +MBT⇆
k2

K

k1
MBTS + CHA

MBT + 2CHA + O2

k3
→ BT + sulfate
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An equilibrium is explained by the last equation

while the velocities of others describe reactions are given by

respectively. Here the concentration is denoted by square brackets ‘[.]’. Fin indicated 
the inflow of oxygen per unit volume and satisfies.a

where klA is the coefficient of mass transfer, H represents Henry constant, and the 
partial oxygen pressure is denoted by p

(
O2

)
 . p

(
O2

)
 is supposed to be independ-

ent of 
[
O2

]
 . The parameters k1 , k2 , k3 , k4 , K , klA , p

(
O2

)
 and H are given constants. 

The procedure begins with a mixture of 0.437  mol/L [MBTS] and 0.367  mol/L 
[ MBTS.CHA ]. At the start, the oxygen concentration is 0.00123 mol/L. There is no 
additional presence of species at first. The simulation is completed in the time inter-
val [0 180 min]. The mathematical formulation of the above description is simply 
obtained by identifying the concentrations [ MBT  ], [ O2 ], [ MBTS ], [ CHA ], [ CBS ], 
[ MBT .CHA ] with y1,…,y6 , respectively. The numerical results by proposed method 
at the end point.

(xend = 180 ) are shown in Table 4.

Problem 5.3 (Robertson Problem)
A stiff system of three non-linear ODEs is involved in the Robertson problem. 

In 1966, Robertson proposed it [53]. [9] came up with the name ROBER. The file 

MBT + CHA +
1

2
O2

k4
→ CBS + H2O

MBT + CHA ⇄ MBT .CHA

Ks1 =
[MBT .CHA]

[MBT].[CHA]�
,

r1 = k1[MBT]4.
[
O2

] 1

2 ,

r2 = k2[MBTS].[CHA],

r3 =
k2

K
[MBT].[CBS],

r4 = k3[MBT].[CHA]2,

r5 = k4[MBT .CHA]2.
[
O2

] 1

2 ,

Fin = klA

(
p
(
O2

)

H
−
[
O2

]
)
,
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rober.f contained the software part of the problem which can be found in [54]. The 
problem is described mathematically in the form.

with y ∈ ℝ
3 , x ∈ [0,X] and the function F is specified by (f1, f2, f3)

T where,

with the initial value y1 = 1,y2 = 0 and y3 = 0.

Origin of the Problem: Robertson [53] defined the ROBER problem as the 
kinetics of an autocatalytic reaction. The composition of the reactions is as 
follows:

A , B, and C are the chemical species and k1 , k2 and k3 are the rate constants. The fol-
lowing mathematical model, consisting of a set of three ODEs, can be put up under 
some ideal conditions [55] and the assumption that the mass action law is imple-
mented to the rate functions.

dy

dx
= F(y), y(0) = y0,

f1 = −0.04y1 + 104y2y3,

f2 = 0.04y1 − 104y2y3 − 3 × 107y2
2
,

f3 = 3 × 107y2
2
,

A
k1
→ B

B + B
k2
→ C + B

B + C
k3
→ A + C

Table 4  Numerical results of 
Problem 5.2

xend yi Absolute Error in 
3POBBDF(5)

Error in [48]

180 y1 6.92288 × 10
−6 1.16162 × 10

−1

y2 1.16287 × 10
−8

1.11941 × 10
−3

y3 3.55564 × 10
−6 1.62125 × 10

−1

y4 1.97555 × 10
−7

3.39591 × 10
−3

y5 1.71447 × 10
−5 1.64618 × 10

−1

y6 2.12229 × 10
−6 1.98954 × 10

−1
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with (y1(0), y2(0), y3(0))
T
= (y01, y02, y03)

T , where y1 , y2 and y3 refers to the concen-
trations of A,B, and C respectively, and y01 , y02 and y03 are concentrations at time 
t = 0 . In the test problem, k1 = 0.04 , k2 = 3 × 107 and k3 = 104 are the numerical 
values of rate constants with the initial concentrations y01 = 1 , y02 = 0 and y03 = 0.

The cause for stiffness is the substantial variation in reaction rate constants. 
This system features a modest, very rapid initial transient phase for problems 
arising from chemical kinetics. This is followed by a highly smooth fluctuation 
of the components, which would be acceptable for a numerical technique with 
a large stepsize. For x ∈ [0,4000], the ODE system is integrated. The numerical 
results by proposed method at the points.

x = 0.4, 40, 4000 are shown in Table 5.

Problem 5.4 (Stiff Chemical Reaction Problem)
Consider the stiff system IVPs.

with the initial conditions as y1(0) = 1 and y2(0) = 1 having exact solutions as,

This problem is solved at x = 50 by the new method and compared the results with 
forth order Two step hybrid method with one off-step point [48]. Here the stepsize 
h = 0.05 is used for compared and proposed methods. The smaller stepsize can also be 
used to get more accurate results. Table 6 shows the numerical results.

⎛
⎜
⎜
⎝

y�
1

y�
2

y�
3

⎞
⎟
⎟
⎠
=

⎛
⎜
⎜
⎝

−k1y1 + k3y2y3
k1y1 − k2y

2
2
− k3y2y3

k2y
2
2

⎞
⎟
⎟
⎠
,

y�
1
= −1002y1 + 1000y2

2

y2
� = y1 − y2(1 + y2),

y1 = exp(−2x)

y2 = exp(−x)

Table 5  Numerical results of 
Problem 5.3

x yi Absolute Error in
3POBBDF(5)

Error in [48]

0.4 y1

y2

y3

7.183E-08
1.227E-11
7.188E-08

9.851E − 01
3.386E − 05
1.479E − 02

40 y1

y2

y3

1.040E-04
4.010E-09
1.044E-04

7.158E − 01
9.185E − 06
2.841E − 01

4000 y1

y2

y3

8.395E-05
5.251E-10
8.398E-05

1.832E − 01
9.942E − 07
8.167E − 01
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6  Discussion

The results generated by the developed 3POBBDF(5) method are displayed in Tables 3, 
4, 5, 6. In Table  3, comparison on the basis of absolute error was made using the 
3POBBDF(5) of order 5 at the point x = 2 with the methods of Khalsaraei and Molayi 
[48] and Ismail’s method [49] at the stepsizeh = 10−5 . In Table  4, 3POBBDF(5) 
method is integrated at h = 10−5 and the direct comparison has been made with the two 
step hybrid method with one off-step point [48] by taking the solution points atx = 180 . 
Table 3 shows that the 3POBBDF(5) is more accurate and performs relatively better 
than the method [48] and significantly better than the method [49]. However, Table 4 
shows the superiority of 3POBBDF(5) over the method [48]. Table 5 shows the numer-
ical integration results for the problem 7.3 at x = 0.4, 40 and 4000 using the proposed 
3POBBDF(5) approach in comparison to that of [48] at h = 0.001 . The comparison of 
the absolute errors in Table 5 for different points of x demonstrates the dominancy of 
3POBBDF(5) over the method given in [48] in terms of accuracy ath = 0.05 . Accord-
ing to Table 6, it is observed that the 3POBBDF(5) method of order 5 is more effective 
than the two-step hybrid method of forth order with one off-step point [48]. In Table 6, 
it can be seen that the 3POBBDF(5) method of order 5 performs better than the fourth 
order Two step hybrid method with one off-step point [48]. As shown by tables (3–6), 
3POBBDF(5) is well suited to nonlinear chemical reaction problems of a stiff nature.

7  Graphical representations of numerical results

The tested chemical reaction problems (5.1)–(5.4) are also compared with ode15s. 
Figures 4, 5, 6, and 7 are the graphs demonstrating the accuracy of the 3POBBDF(5) 
compared with the stiff solver ode15s. It can be examined from the graphs that the 
results of the 3POBBDF(5) method and the results of ode15s are nearly identical 
at specific intervals. These figures demonstrate that the proposed method is well 
suited for stiff chemical reaction problems, since the solutions produced by the 
3POBBDF(5) coincide with the well-known ode15s code of MATLAB.

8  Conclusion

In the present paper, an implicit 3POBBDF(5) method has been derived for the 
numerical solution of stiff systems of first-order IVPs arising from chemical reac-
tions such as Chemical AKZO, Robertson problem, and stiff chemical problems. The 

Table 6  Numerical results of 
Example 5.4

x yi Absolute Error in 
3POBBDF(5)

Error in [48]

50 y1 7.38E-24 7.14E − 21
y2 4.83E-25 3.34E − 19
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approach is based on the block BDF, in which at each step of the integration, three 
approximate solutions are generated instantaneously. Based on stability analysis of 
the 3POBBDF(5), the method is consistent and zero-stable; thus, the 3POBBF(5) is 
convergent. Since it has an A-stability property, the method is declared suitable for 
solving stiff ODEs. Comparison between the stability regions was also made which 
shows that the 3POBBDF(5) has a smaller interval of instability than the BBDFO(6) 
suggested by [42]. The numerical results obtained through the 3POBBDF(5) and 
compared to [48] and [49] evidenced that by applying the 3POBBDF(5) method, 

Fig. 4  Graphs of intervals vs solution values for Problem 5.1

Fig. 5  Graphs of intervals vs solution values for Problem 5.2
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the accuracy of the numerical solutions in terms of absolute error at specific points 
is improved. Hence, the proposed method can be successfully applied on stiff sys-
tems generated from chemical reactions because of their high order accuracy and 
wider stability region. Therefore, it can be concluded that the 3POBBDF(5) could 
be an appropriate substitute solver for stiff ODEs. To improve efficiency, further 
research can be implemented by using variable step sizes for solving ODEs would 
be beneficial.

Fig. 6  Graphs of intervals vs solution values for Problem 5.3

Fig. 7  Graphs of intervals Vs solution values for Problem 5.4
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