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Abstract: Integration of a larger stiff system of initial value problems emerging from chemical kinetics
models requires a method that is both efficient and accurate, with a large absolute stability region.
To determine the solutions of the stiff chemical kinetics ordinary differential equations that help in
explaining chemically reactive flows, a numerical integration methodology known as the 3-point
variable step block hybrid method has been devised. An appropriate time step is automatically
chosen to give accurate results. To check the efficiency of the new method, the numerical integration
of a few renowned stiff chemical problems is evaluated such as Belousov—Zhabotinskii reaction and
Hires, which are widely used in numerical studies. The results generated are then compared with the
MATLAB stiff solver, odel5s.

Keywords: variable step hybrid block; stiff; chemical kinetics models; edel5s

1. Introduction

Stiff chemical kinetic models are required for the modeling of a practically real-world
chemical system, such as atmospheric chemistry, energy conversion and storage, chem-
ical engineering, the environment and materials, and biomedical and pharmaceutical
engineering [1-3].

The following Ordinary Differential Equations (ODEs) can be used to model a homo-
geneous chemical reaction system:

1)" :f[f,_lﬂ, fp < t < tfina (1)

ylto) = wo (2)

The column vector of species concentration is represented by v = [y, y2.- - -, yN]T and
N represents the total quantity of chemical species where t denotes the time, and the initial
and final time are symbolized as ) and f 1,57, respectively. The inifial species concentrations
are indicated by the column vector yy. Numerical solutions for stiff ODE systems defined
by Equation (1) can be obtained using explicit or implicit ODE integrator [4—£]. Many ODEs
have been used for chemical kinetic models; however, they are stiff [9], and solving stiff
ODEs using an explicit technique necessitates very short time steps, making integration
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computationally intensive. Alternatively, implicit ODE integrators, such as the Backward
Differentiation Formula (BDF), can be employed. In general, the implicit methods usually
involve Newton Iteration for solving stiff systems of ODEs which is lime-consuming
because it consists of a Jacobian matrix that needs to be solved for every integration step.
Therefore, it is still a research focus to deal with the Jacobian part for solving stiff system of
ODEs [10,11], which is a fundamental aspect of several reaction-diffusion systems, such as
in energy conversion, medicinal applications, and chemical engineering,.

Although it is intricate to provide a clear description of the stiffness of the chemical
kinetic model, one of the conditions can be if different species have significantly different
time scales. Some fast-evolving organisms, for example, have very small time scales,
whereas others evolve slowly and take longer time scales. The computing cost of explicit
ODE integrators created for non-stiff problems against implicit ones, developed for stiff
problems on the application is a realistic way to quantify stiffness. The problem can also
be classified as very stiff if the computational cost of using an implicit ODE integrator is
significantly less than the cost of an explidt ODE integrator [12].

The backward differentiation formula (BDF), often known as Gear's approach and
initially proposed in [13], is the foundation for many well-known strategies for addressing
stiff problems. Various researchers, such as [1,14-17], proposed methods to increase the
accuracy and computation time for stiff problems. Ref. [17] presented the idea of using
the Block Backward Differentiation Formula (EBDF) to solve first-order stiff problems and
since then the BBDF approach is increasingly being used to solve stiff ODEs. There are
many solvers based on the BBDF methaod that are used to solve stiff ODEs that have been
developed in the literature [18-20].

BDF has been extensively used because of its high stability properties. Based on the
classical BDF method, several block methods have been proposed. The BBDF is one of
the most prominent block approaches based on BDFs ([20-22]). r—point Block Backward
Differentiation Formula (—BBDF) presented by [23], are used and expanded later. The
block method based on BDF is particularly efficient for solving stiff ODEs to reduce the
computational ime and enhance the accuracy [21,25].

Despite having many advantages, the block method has the major drawback that the
order of interpolation points could not surpass the order of differential equations [26,27]. As a
result of this drawback, the addition of off-step points in the block was introduced and named
the Hybrid method. Hybrid block approaches for the solution of IVPs in ODEs were proposed
by [28-30]. Although this method 1s difficult to implement, it provides a better approximation
than the k—step method, specifically when the step length is shorter. The developed methods
provided improved stability properties and circumvented the Dahlquist stability constramt by
introducing off-step points [31]. Hybrid methods have also demonstrated improved stability,
particularly when the problem is stiff or oscillatory [32,33].

Motivated by the above literature reviews, this study is aimed to develop a 3—point
variable step block hybrid method (3-point VSBHM), by applying Lagrange polynomials
as the basis function. In addition, the variable step—BBDF with an increment of step sizes to
a factor of 1.6 and 19 has been studied by [17,34]. The proposed method will be employed
on stiff chemical kinetics modeling as shown in Equation (1). For the purpose of selecting
off-step points, several points have been observed and hence it is found that when the step
size of the off-step point is halved, the 3-point VSBHM is zero stable. The proposed method
has the advantage of the solutions being approximated at three points simultaneously
when compared with I‘.QTLAB stiff solver odel5s.

The organization of the paper is as follows; Section 2 briefly describes the formula-
tion of the method. Section 3 comprises of stability analysis of 3—point VSBHM with its
properties. Section 4 elaborates on the implementation of the derived method followed by
the step size strategy. A list of tested problems is presented in Section 5. Section 6 contains
results and a discussion of the tested problems. Finally, Section 7 is the conclusion.
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2. Formulation of 3-Point Variable Step Block Hybrid Method (3-Point VSBHM)

This section discusses the formulation of 3-point VSBHM. The three values of v, 1,
Yut2, and ¥, .3 with one off-step pointy, | 5 are calculated concurrently in a block using
earlier blocks with each block containing three points (refer to Figure 1). The computed
block contains 31 as the step size and rh pointed out the previous block where r shows the
step size ratio. To manage the step size, the step size ratio (r), is considered throughout the
derivation process. The values of r used in [17] werer = 1,2, % even though r =1, 2, %
used in [5]. Hence, valuesr =1, r =2andr = %] are considered in this research as the
strategy to maintain, halve, or increase the step size by a factor of 1.9, respectively.

— h
rh h h : ¢ ‘|
| | | |
| | | |
A Ly tniz t"+§
—_—r— 2
Ly
tilHl

Figure 1. 3-Point Variable Step Block Hybrid Method (VSBHM).

Theinterpolating polynomial F, (t) interpolates the values of a function f(f, y) m Equa-
tion (1) at k = 6 with interpolating points of (f,_ 1, ¥,—1), (e, ¥i)s (bysts Vier)e { Badz, Wing2),
(t,. 5.4, 3)and (t,43,1u43). Lagrange polynomial P (t) is defined as:

AL 2

k-2
Pk(‘L) = LL,‘.‘IZ“}F“H—MZ) —+ E Lk.j(i)]‘f (rrr+3—;) (3)
j=0
where
t—t 19 *_*.u L8 .
LM(?) =TI =0 tlj-l-.\--_|IJ_'E‘I|-;-I_‘\---| (fu+.\--_|_f:_l_é ) for each} =0,1,.... k=2,
i#] |
; ] k—2  t—taia
and Lis/o(t) = 1_[,-_.[] f.-...afz—fTJ 13-

Lets = L_i.:i and replace y(t) in Equation (1) by a polynomial Equation (3). To
obtain the y’, the resultant polynomial in Equation (3) is differentiated for s at point f and
substitute dt by hds, so that

¥ =rty)
WPy (typ1 +sh) = 302225[3(3 425 — 1557 — 457 + 105 + (3 — 45— 95 +85%))]
32y s
~ ey iost — 48% — 952+ 25 + 2+ r(ds® — 657 — 25+ 2)]

+“£'$r2123+55—952 — 657 + 551 4+ r(3 —s—%—l—-&lﬁ]]

(G

— o [3(1 4225 — 95% — 208® 4-10s%) 4 7(7 +85 — 2157 4 85°)]

-3 4 75+ 657 — 1483 +5s* 4 7(—3 4135 — 2 1+ 45%))

= Yn1 - 2 1443 A4
rrH1)(r+2)(r+3 ) (r3) [ 3475 +6s 135"+ ]
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By substitutings =0, 1, =_} and 2 into Equation (4) we obtain,

fd{147)
— G52 Yl e E J'”+2_ 6u+nJ"+1

— {14r1)
Fl'f{f,;_'_]) — 2‘(34_,] Yut3

_ 3144 i 3y,
I5r 1T i1 (r2 )+ 3)(r+3)

64{2+r) (3r4+4)

; {(—r—2)
hf(tura) = .'fs{.;l.—l'-]""H"' 512 Yt — 2 Ynt2 —

’3{1 |r| a1
(2+1)
+ 35 Y —

TR | ST
r|r+'1]||"+2]|:r—%]{r+3]y”_.I

- _ {75430r) 2(55+167)
h_f(r"+§) = Watr) Yntd =+ 15(5+2r) J'n+—

(75+30r) {25+ | 15+6¢)
Te(z4r) Yn+2 aa(1+r‘. Y — ggr Yo

_ 15 1
Telr+1)(r42) (r+3)(r 3] 7

[75423¢)

32{18+46r| +3r) (9+3r)
hf(f} = 3(:}_{_” _fu+.J =

Bt Ynt§ + Sy — STE Y1

1347

e .r+1Jr+2;|r—-—"|<r+ajf”‘1

5

(6)

@)

(L)

On substituting r = 1, r = 2 and r = 1§ into Equations (5)-(8) gives the coefficients
for 3-point VSBHM are presented as in Table 1. These r values are properly considered for

zero stability and computational efficiency.

Table 1. Variable Step Size Ratio Formulae.

Step Size Ratio Block Points Formulae 3-Point VSBHM
3 3 6d 3 3p ¢
LIES! -1 — 5¥n +3ns2 — ?{'-','_'pr;E + gY¥n+3 — }hfn-rl
1 3 3 384 3 r
Yn+2 —gg¥n—1 T 35¥n — 71t Eyn—:% ~ 1@ln+3 ’_b'hfrHZ
=1
Lfn_;g _%_‘)‘n—l =+, %l"” 2 %_‘fﬁ—] = %%:—:2 q\;;g}n 3+ 1_19! Jn43
3 16 12 48 3072 12
Yn43 IEWn—1 — 7EYn T g+l — @inez + T?'TS:‘fng + Ej’fr.‘—:S
Yn+1 ﬁyre—l = '2?5_‘."“ + %ywz 1)’,.;_-? ‘fs.‘}ra—:—ﬂ = _%f'fnﬂ
Yn+2 _5':]?5.‘1"r.'—1 + 5"5%! - l,.f,._| + 1(%'25‘!)'"__ = ':Fl'g.‘fr-'—-ﬂ - g"‘fn—-Z
r=2
Yps2 3‘751'2%:—1 T T%;b’r.' %_‘)’n—.l f %yn—.?_ %Fn—.s |' é%hf,;_:%
5 35
Yn+3 ?%_‘!r:—] T Yn o TQ"T_‘MTJ mjr-—-—: f ’E‘SB"”___: | ]%O'Thfn—.s
748 297 107 5.
Yn+1 7 pogodn—1 ':nq.‘-"n +Z 713 ‘)‘ra—2 T]"]‘J"_lep_.. + é%'}'nd—‘% = gn hfn 1
Ynsa zzf;j%%pﬂu 1+ T2 — T e+l + DR — BRI Vaes — B
10
Fe 7,428,297 198,375 345 ) ¢
) Y, '3 = =Wn-1 m”r: ~ TG 1,I’u—1 + m‘ﬁwz Fenan+3 T 'ﬁﬁhf,_. +
7428 297 13467

4 13,467
Ynsa T TR0Yn—1 — 31575Yn + kY41

1723976 2
= 11240“!1 2+ Faress Vnr s t 2 hifia

3
2
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3. Stability Analysis of 3-Point VSBHM with Its Properties

The practical significance of a method is dependent on its region of absolute stability
that ensures solving at least slightly stitt problems [35]. The stability properties of the
proposed methods are examined in this section to illustrate their use in resolving stiff
problems. For a method to be stable, some definitions will be provided to support the
practical criterion in addressing stiff problems.

3.1. Zero-Stability

Definition 1. (Zero-stable). “The Linear Multistep Method (LMM) is said to be zero-stable if no
root of the first characteristic polynonial, p (t) has modulus greater than one, and if every rwot with
modulus one is simple”.

Definition 2. (A-stable). “A method is said to be A-stable if all numerical approximations tend to
zerowhen it is applied to the differential equation v' = Ay with a fixed positive h and a complex
constant A with negative real part”.

Ref. [36] proposed the scalar test to determine the stability of the method for Table 1 as

_lf =Ay, A <0, (9)

where A represents the complex constant with Re(A) < (. Equation (9) is substituted in
Table 1, therefore it precedes for r — 1as,

e 3 | 6l 3 3
Y41 = 5g¥n—1 —5¥n T P et o] + gluss — Eh/\_]}‘u+l

Ynr2 = —gg¥n—1t EYn — FYns1 + ;—ﬁ%b‘,,_,_; — frYn+3 — ShAYnr2
(10)
5 5 36 367 5
Vusg =~ Rlstocs-+ Mt — Blvoss-+ Bitnsa— Wvess-+ By
%y"‘fz f %yn—% f %h’\yllf’ﬁ

3 16 12
Yn+3 = sm¥n—1 — msYn + m¥n+

Equation (10) is then inscribed into the matrix form to attain the matrix as follows

6d 331 7 3 3
gt -3 1+43hA 2 9 = o
384 6 3 Yur3 3 1 Yn
I‘I+§ — II—-z
105 3675 1225 Yni2 147 75 Yu 1
—mh —3n 7514 i 7z 0 —as O y:_ "
_ 307 48 12 _16 g 3 0
715 Fe] = L — I3 3 i
whereas,
which is equivalent to,
-3 % -3 1+3hA ] [ -2 0 &% 0]
3 384 f 9 3 1
, D=
3675 105 3675 1225 147 75
5088 1—1phl -5 I511 7z 0 —aqm O
12 3072 18 12 16 3
B AN v o -5 | L —s 0 sz 0]
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CY¥y = DYy _y, (11)

where C and D in Equation (11) are appropriately selected m x m matrix coefficients and N
represent the number of blocks (note that the evaluation presented here is only forr = 1.
For (r = 2, 10/19), the same procedure is considered). H = A is replaced in the mafrices
which are obtained by Equation (10). The stability polynomials R, (t, H) correlated with
Table 1 are attained by solving the characteristic equations |Ct — D| using different step
size ratios (r =1 % %)

Ri(t, H) = —9f | 27HE + 9H* 2 230768 24462HF  9279HPF
1t = 38706 | 7412 T 97412 24,353 21,353 24,553

_ B89 KA + a6t 179,199 1 g 159 417H
18,706 18,706 7,012 07,112 (12)

_ a5t 4 8w
48,704 379

Ry(t, H) = — 242 + 3Ht? + H2P 496147 47203HE 16897 H?H
20y — TEAVE TRV T BT T OEFFIE T CEF7l T T BFTE

_5MHE wpelert 20,1040 | 94716H2Y 95 (13)
17,515 17,75 17566~ 87,735 1595

y GasHA
3509

B il By 44,569,782+ | 66,854,673 H | 22,284,891 H 2
w/19\b 8= —a7mag7sE7s T A7 03975875 T A7 34975875

2,000

_ T4,668,515,218F 97,422 580,953 Ht*
I7 034,975,875 370549755875

_40,170,428,271 HA 231,953 814H 597,704,688 t* (14)

T 0M 975,875 158L,399,035 576,279,807

_ 5,555,509,848 Ht 2t 4592538,692H2 2,257 808,634 F7H
1,881,399,155 T,861,399,035 1,881,399035

4 115,633,858 Hit
376,279,807

The zero stability is determined from the stability polynomial in Equations (12)—(14)
by substituting H = hA =0 into Equations (12)—(14), generating

—9¢2 23,076t> 41,6161

Ri(t,H) = 4 15
(b H) = 42706 24,353 | 48,706 @)
i 242 49, 61483 49, 6164
Ri(t,H) = — e 4 16
2t H) 87,725 87,725 87,725 )
44,569,782 7 74,668,516,218 7 597,704, 688
Ryp1e(t, H) = (17)

~47,034,975,875 47,034,975, 875 376,279,807

By equating Equations (15)—(17) = 0, the roots of stability polynamial can be obtained.
Table 2 presents the roots for variable step sizes.
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Table 2. Roots for Variable Step Size Ratio.
Step Size Ratio Roots
r=1 t =0.00019497, t =0, ¢t =0, t =1,
r=12 t = —0.000040309, t =0, t = 0and t = 1.
r=1 t = —0.000596546, t = 0,t = 0and t = L.

Since all the roots lie within [#| < 1 described in Definition 1, hence, the method
3—point VSBHM is determined as a zero stable.

3.2. Stability Regions

Stability regions of the system are plotted in this section, using the stability polynomi-
als givenin Equations (12)-(14). The set of points defined by t = ¢?,0 < 0 < 27 describes
the boundary of the stability region. To determine the boundary of the stability region,
the condition of roots ([f| < 1} of the stability polynomial mustbe tested at multiple grid
points. Using variable step size ratios, Figure 2 illustrates the regions of absolute stability.

Imaginary
|
4
!
|
|
L

2

) \ - Real
)

2 e |
[
!
!

-4
Figure 2. Stability region of 3-Point VSBHM.

The stability region corresponding to the 3—point VSBHM is presented in Figure 2.
The stability region is outside of the bounded region. The method is A-stable because the

majority of the region is on the left half-plane, as defined by Definition 2. Thus, it can be
implied that the developed 3—point VSBHM is appropriate for stiff problems.
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4. Implementation of the 3-Point VSHBM and Selection of Step Size
4.1. Implementation of the 3-Point VSBHM

Throughout this section, the Newton-type scheme to find the approximation solutions
of y,1, Yut2, and vy, 3 with one off-step point Vpys instantaneously at every step is

derived. The general forms of the 3-point VSBHM as 1121 Equation (18)

Yarl = 021Yni2 T 05 1V, 05 + 31 ns + ayihfuor+in
Yas2 = O12Yas1 + 05,0, 48 + T3olnqs + kool fuio +
(18)

\1/"4_; = t7'1J§\1Jrl'1+'l + Uzéyn—2 + [73311"”—3 + aiéhf”_;_% + fP;

Yutd = C13Yut1 + 023042 03 3,05 + @33R fuis+ s

with iy, ¢, tpz,, and ¢ are back values. Writing Equation (18) in the matrix-vector form as

(I-A)Y, FLut 2t 3mi3 hBF+7, Flott 2t 3,043 (19)
1000 Vit
01 00 Yut+2
with I = ’Y|1+1,r1+2,n—£},n+3 = ’
0010 Yn45/2
00 01 Yura
[0 oy o5y o3 ] (a7 O 0 0 ]
3
- 0 22 0 0
T2 0 [7__;’2 32
A= B=1 9 ®zs 0|
(Tl’g (7:% ( (Yi’% 33
0 0 0 as
i T3 a3 [7; 3 0 ] | |
fur1 1
~ _ fn+2 o 1P2
}—r1+l,n—2,n+§,rr+3 - fn+ﬁ,-"2 and §n+l,n+2,n+§,n—3 - T_qu,z
f-’1+3 ‘Pa
By letting Equation (19)
J‘|'1—1,|1+2,|'1+%,|'1+3 = (I A)Yn+l,n+2,rr+§,n+3 hB};r+l,n+2,n+§,n+3 €r1+l,n+2;1+%,n+3 =0 (20)
the generalized Newton iteration formula is then defined as
(i+1) (1 pr!+l,n+2 r1+'—",|1+3
ral / — it ol 2 . (21)

n+1,0+20+ %,I‘I—f‘! T Tl 42,4 %,n+3 }:‘f -
= - n+1n+2,n+ %,r1+3
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By applying Newton's iteration of Equation (21) to the Equation (20) to approximate
the solution,
Ait1) i)

r1+l,rr+l,r1+%,n+3 rr+],r1+2,n+%,u+3
—1
ar At
[[I A] hBaY (}!1+1,vr+l,n+:-2’,!1+3)] (22)

(1) -
1-AY? s . —hBF( YY" 5 — 5
[l‘ / n+1n+2n4 3143 n+1ln+2nt 3043 {"”—1;”+2;|'1+3,I'1+3

i i1 .  atis ; NS aF [yl
(i) and (i + 1) represent the previous and current iterations. The term ¢ (Wu+l’n+2’n+%’”+3>

is the Jacobian matrix of F for Y. Equation (22) is separated into three different matrices
denoted as,

E{|+1J _ Y{f‘+1j _ Y{.ij (23)
1,2,%,3 T 1n420m4 g,n 13 mt L+ 2,04 g,n 13’
" dF [ i)
A= (I N A) - hBﬁ (Yrr+1.n+2,n+i}.n+3)' (24)

n_ _ (i) _ . (i) _ .
b= [U A}Yu—l,u+2,r1+;,rr+3 hBE (le+l,u+2,rr+;—,r.l+3) \Cu L2043 3:] (25)

An approximate solution fo Equation (1) is obtained using a two-stage Newton-type

iteration. Thus, the corresponding linear system to be solved is AE! f+_1'| = B, where E, 33
-+ T S e

is the increment, A and B are defined as

[ ar;m) i ) st s )
— Taq — (X — —
1 I'l])]h (a_'.l’u+1 021 b l‘lh 3_vu+z e 2 &, lh _'.’_,J+g (T:‘ ) 1'1] lh I-"u+'5
fny2 ; {3 fug2 . ; dfugr af, u+2
0,2 — a2 2h(m) ]—ﬁzlzh(m) Uig—ﬁz,zh (W 2 —ﬁz "u+3
) nt 3
P .3 P .5 P .5 ,,+z
(Mt E Ll 7y Bt ey B L —agshl 33
h —a _-"h(a.']w.a T — daahi Vfnia O . — (tanh Afiys 1 — aah fnia
13— M3l (50 23— a33h( 30 32 sl {5y ash( a3y

B (i) (1) )] () ) (1)
Y T 202 H O3 Y, s Yy s @ty

i) (i)
M2 a1 — Y2 +os ,ZJ[ +3 + Jj'»ZJ‘n+3 + RZZ'!!f|'1+2 +¢2
B—
ol ) (i) ) . (i) .
l"7'I,'2’-y|'1+'| + a},g-yn-{—Z - y,., } 2 + a_'—‘,;yn+3 + R'z’,% .ff" b3 + IP%

1) (i) (i) ’ (i)
M3l T 023 Jr‘ 2""7* EUM —J'n|1+’33,3hfn|.1.+¢)3
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To ensure efficiency, a full Jacobian evaluation is only performed after a step failure, as
part of the implementation of the method [17]. To reduce the computational time, a few
stralegies are presented below for minimizing the Jacobian evaluation.

(1) When a successful step occurs, a new step size will be determined. This new step size
be either increased (r = %) or remain as in the previous step size (r = 1). Each time
the step size h is increased, the new matrix Equations (24) and (25) are evaluated. If
the step size Jt remains as [# = 1), there will be no calculations of new matrices A and
B. Hence, it will skip the Jacobian evaluation process and the previous matrices A

B s o [1+1) s . .
and B will be used to solve Y"+ Lt 2nt Entd This process is called partial Jacobian

evaluation.

(2) When a failure step occurs, the next step size will be half of the previous step size
(r = 2). Here the matrices A and B need to be updated with the new evaluations of
the Jacobian matrix. This process is called full Jacobian evaluation.

4.2, Selection of Step Size

Reduction in computation time and the number of iterations can be achieved by
choosing the step size properly. Throughout the process, a tolerance level (TOL) needs to
be specified. If local truncation error (LTE) is less than the tolerance limit, then the values
(Tuet, Yok (Y2, Vi), (X5, Yy 3) And (V3 Yrs3) are acceptable. The LTE can be
obtained as,

o R tp=1)
LTE = Yz — Yua3

y:lﬂ_] 5 is the (p)th order of the method and y:.li__,“ is the (p — 1)th order of the method.
If the LTE > TOL then the values of iy, 41, ¥42, y”_‘__z-‘ and ¥, 43 are rejected, then the step is

repeated by halving the current step size (r = 2). After a successful step (LTE < TOL), the

step size increment is given by

TOL)%

;, p = C b e
Tiew CH Myl * (LTE

and if
Mizewr = 1.9 * fypq then Byuew = 1.9 % l1q

Safety factor c is set as 0.8 to make sure that the failure steps are being reduced, p
shows the order of the method and I, is the step size from the previous block.

5. Test Problems

In thissection, some stiff chemical kinetics problems are presented. These test problems
are solved using the 3—point VSBHM and compared with the numerical results with odel5s.
Graphical representations of resulls are presented in Section 6.

Example 1. Belousov—Zhabotinskii reaction.

The fallowing system of homogeneous chemical reactions can be used to illustrate the
Belousov—Zhabotinskii reaction [2],

A+Y X, b =472571
X4+Y =Pk =3x10%"1
B+X 52X 47, ky=15x10%"1
2X = Q ks =4x 10771
Z =Y, ks=1s"1

Theletters A, ..., Z represent the species involved in the reactions, while the constants
k; stands for the reaction rates. We just need to analyze the fluctuations in concentrations
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over time t, since the Belousov—Zhabotinskii reaction is homogeneous (all species are
evenly distributed in the reaction space). The reaction rate constant characterizes each
reaction step. The rate constants differ by several orders of magnitude, indicating that the
associated ODE system is likely to be stiff. The initial conditions are determined by the
species concentrations at + = (:

A=B=0066Y=X=P=Q=0, Z=10002

The reaction scheme is modeled by the following system of ODEs:

dA ’
4 = =k
dyY i
F == —kyy1ya —kayayo + ksye,
dXx i
oY= —kavata + kayays — 2kat + kryaya,
dapP i
o ¥y = kaisya,
L8 e = —k31s51,
o Y = —K3l5Ys,
iz _

= Y = —kaysys —Ksys,

a5 =~ Y7 = ks

where the initial concentrations of the species are [Ay] = 11(0) = 0.066M, [Yo] = ¥2(0) =
OM, [Xo] = ya(0) = OM, [Ry] = y4(0) = OM,[Bg] = y5(0) = 0.066M,[Zg] = y4(0) =
0.002M and [Q¢] = y7(0} = OM (IM = 1mel.L™") at the lime interval inseconds { € [0, 40].

Example 2. Stiff Chemical Problem.

Consider a non-linear system of differential equations of one of the chemical kinetic
problems [37]:

Vi =M1+, =~

where A = 10,000. The exact solutionis i (x) = ﬁ and yp(x) = e %,
Example 3. HIRES.

This HIRES (High Irradiance Responses) problem is a first-order differential equation
system of mild stiffness. It is a chemical process that simulates how light influences plant
morphogenesis. Schifer [33] hypothesized this chemical process involving eight reactants
to explain plant tissue development and differentiation in the absence of photosynthesis at

high levels of light irradiance. It was previously used as a test case for a block—oriented
simulation system by Gottwald [39].
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The corresponding differential equations are:

vy =~k +koys +kays + ky,

.

Vo =k —ksyz,
Yy = —keys + kaya +kzys,
yﬁ, = ks + ksyja — koya,

Ys = —kyo¥s + kaye + kayz,

y}, = —kuyeys + kiaya + ksys — kays + ki2ys,
Yo = kiyeys —kiayz,

Vs = Yo

Here ki = 17157}, ko = 04357, ks = 83271, ky = 0.0007s7!, ks = 8.75 1,
ke = 100371, k; = 0.03571, kg = 171s7L, ky = 112571, k), = 1745¢7],
k11 = 280571, k12 = 0.695~! and k13 = 1.81s~ ! are kinetic constants with the initial values
yp=1molL ™, y» =13 = ¥y = y5 = ¥ = y7 = 0mol-L ™! and y3 = 0.0057 mol-L ! at
the time interval { € [0,50] in minutes [40,41].

6. Results and Discussion

In this section, we present the results of numerical experiments obtained by the 3—point
VSBHM as described in Section 3. This method is applied to chemical kinetics problems to
confirm the competence of proposed stepsize changing strategies and to show the efficiency
of the method. A comparison of the results is made with MATLAB stiff solver odel5s.

When integrating systems of ODEs, choosing initial conditions is typically not easy,
specifically when the equations are stiff, and therefore the result is not easily predicted. In
our opinion, the 3—point VSBHM allows for convergence in terms of approximate solutions
is rather important. The shown Figures 3-7 represent the approximate results of 3—paoint
VSBHM when the error tolerance is less than 105,104 and 10— for Problems 1, 2, and 3,
respectively.

From the given Figures 4, 5 and 7, it is clear that the convergence of the 3—point
VSBHM approach provides a good approximation to the solution.

The concentrations of seven chemical reactions are displayed in Figure 3. The trend
of concentration with respect to time demonstrates the decay of chemical reaction in
Figure 3a,b f for the solution values of iy, /2, and 1 as time increases. This demonstrates
that concentration has a constant behavior and does not change with respect to time.
Figure 3b shows an initial quick transient phase, but as time increases, the reactions show
stable behavior. Figure 3¢ depicts the concentration for i3, with the points fluctuating as
time increases. In comparison to the previous Figure 3ab,f, Figure 3d exhibits that i3 has
a distinct behavior. It shows that as time increases, there is a noticeable increase in the
concentration of 4. Figure 3e depicts the ys concentration decreases at a steady rate as time
increases. On the other hand, the graphical representation of Figure 3g demonstrates that
there is a quick transient phase at first, but after a few seconds, the concentration displays
constant behavior.
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Figure 3. Concentration of A, B, X, ¥, P,Q, and Z computed using the 3— Point VSBHM for Prob-
lem 1. From left to right and top to bottom, Figure (a-g) shows the numerical solution of the Belousov-
Zhabotinskii reaction for t € [0, 40] in seconds for the concentrations (yy; — y7 ) with the error tolerance 1077
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Figure 4. Comparison graphs with the solution from odel5s for Problem 1 with tol = 107® for
3-point VSBHM.
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minutes for the concentrations (1 — yg) with the error tolerance 1075,
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Figure 7. Comparison graphs using 3-point VSBHM and odel 5s for Problem 3.

Figure 1 displays the comparisons of the concentrations by using the 3—point VSBHM
and odel5s. The 3—point VSBHM can approximate the solution of stiff Problem 1. From
Figure 4, it is shown that the 3—point VSBHM converges and approximates well the solution
of the Belousov—Zhabotinskii reaction.

The results for Problem 2 is displayed in Figure 5 at tol = 10~ for 3—point VSBHM.
Figure 5 elaborates the comparison of solution values with stiff solver odel5s and 3-
point VSBHM from which a clear sketch for the proposed method is drawn as it almost
approaches the solution values given by MATLAB stiff solver odel5s. Hence, it is shown
that the 3—point VSBHM also converges and approximates well the solution for this stiff
chemical problem.

Figure 6 portrays the attention towards the results for Problem 3. For the components
1, Y2, W3, Y4, Y5 Ye, Y7, and yg, we have chosen the interval [0, 50] in minutes. In Figure 6a,
the plot shows the chemical solution for the species y1. The solution shows a quick decrease
in concentration values for the first 5 min and shows a stable behavior after approximately
10 min. Figure 6b—d show the rapid change in the concentration values for the first 10 min
and become stable after 10 min. Figure te,f show a similar pattern of increasing the
concentration at the initial phase and keep decreasing in low values as the ime increases.
Whereas, Figure 6g shows a rapid increase in the concentration of y; at the beginning of
5 min and remains constant in behavior at its highest value with the increment in time.
Figure 6h depicts totally inverse reactions to Figure 6g. The problem is made up of eight
elements, which could be considered a significant number. The proposed approach also
converges to the solution of ode15s as shown in Figure 7.

This chemical solution agrees well with the data reported by MATLAB in Figure 7.
As seen n Figure 7, the stiffness of this problem is due to a large difference in the kinetic
constants k;, which results in a very rapid initial transient. Initially, some very rapid
transient reactions occur for some species such as 1, 2, ¥3, 14,7 and yg then stay almost
constant. Hence from Figure 7, it can be concluded that because of the convergence of the
developed 3—point VSBHM with odel5s, it can be used as an appropriate stiff solver for the
numerical solutions of stiff chemical kinetics problems.
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7. Conclusions

For the solution of the stiff chemical kinetics model, a 3—point VSBHM has been
derived as shown in Section 3. The derived method shows an extensive region of stability
which can be seen in Figure 2. Few IVPs originating from chemical kinetics comprised of
large systems of stiff ODEs have been effectively implemented in the 3—point VSBHM, such
as the Belousov—Zhabotinskii reaction and HIRES. Their results have been compared with
MATLAB stiff solver odel5s. From the combined graphical representation of the problems,
it can be concluded that the 3—point VSBHM techniques work appropriately and can be
used as a stiff solver for the solutions of stiff chemical kinetics problems.
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