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Abstract: Generalized autoregressive conditional heteroskedasticity (GARCH) is one of the most
popular models for time-series forecasting. The GARCH model uses a maximum likelihood method
for parameter estimation. For the likelihood method to work, there should be a known and specific
distribution. However, due to uncertainties in time-series data, a specific distribution is indeterminable.
The GARCH model is also unable to capture the influence of each variance in the observation because
the calculation of the long-run average variance only considers the series in its entirety, hence the
information on different effects of the variances in each observation is disregarded. Therefore,
in this study, a novel forecasting model dubbed a fuzzy linear regression sliding window GARCH
(FLR-FSWGARCH) model was proposed; a fuzzy linear regression was combined in GARCH to
estimate parameters and a fuzzy sliding window variance was developed to estimate the weight of a
forecast. The proposed model promotes consistency and symmetry in the parameter estimation and
forecasting, which in turn increases the accuracy of forecasts. Two datasets were used for evaluation
purposes and the result of the proposed model produced forecasts that were almost similar to the
actual data and outperformed existing models. The proposed model was significantly fitted and
reliable for time-series forecasting.

Keywords: forecasting; fuzzy linear regression; fuzzy logic; sliding window; time series

1. Introduction

Time-series forecasting is commonly considered as a technique for estimating many future
domains. It has become a major interest in statistical inference and predictions for researchers and
academics [1]. Almost every aspect of life, including the economy [2], physics [3], agriculture [4],
and engineering [5], has applied time-series analysis. In economics, the accurate forecasting of data
from a financial time series allows investors to determine relevant strategies and techniques to reduce
price risk and protect their investment from unacceptable loss. One of the most crucial applications of
forecasting is in investment risk management. Thus, the scrupulous selection of an effective forecasting
model is important for managing non-linearity to ensure critical input for plans and decisions. In a
significant number of studies, generalized autoregressive conditional heteroskedasticity (GARCH) and
exponentially weighted moving average (EWMA) models have been used for time series forecasting,
especially in estimating and predicting future values given the existence of ARCH effects in return
series. Individual researchers can conveniently manipulate the GARCH and EWMA models as several
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resources are publicly available that can be used to develop forecasts effortlessly. Bollerslev [6]
developed the GARCH model to estimate and predict future values given the existence of ARCH
effects in return series in particular. The GARCH model has achieved significant success in describing
in-sample forecasting characteristics [7]. Many studies used the GARCH model, for example, a study
of the stochastic representation of impulsive noise in the frequency band [8], a study of the stock
exchange market of China [9], and a study of Bitcoin volatility [10]. They found that the GARCH model
is more accurate when compared to ordinary-least-square (OLS) and EWMA methods. From these
studies, despite having publicly accessible tools to easily forecast data, the GARCH model performed
better than the EWMA. Thus, our study used the GARCH model as a basis for improvement.

Extensive research is being undertaken to improve the GARCH model by combining mathematical
and statistical models, thus creating new models. For instance, a Glosten–Jagannathan–Runkle–GARCH
(GJR-GARCH) model was introduced to allow for the conditional variance to respond to previous
negative and positive changes differently [11], and was then applied in measuring extreme risks within
a sustainable financial system [12]. A combination of an artificial neural network (ANN) and GARCH
was proposed for the volatility forecasting of daily log-returns series in a study of international stock
return volatility [13], and was then applied in a study of the Chinese energy market [14]. More improved
GARCH models were introduced for variance–covariance and correlation forecasting, including the
use of orthogonal components for displaying temporal aggregated properties that are not found
when working with univariate models [15]; the use of copulas for conveniently linking univariate
GARCH [16]; and the use of realized semi-variances, semi-covariances, and semi-correlations [17].
Most of the improved model was used for correlation components, such as covariances and volatilities
of stock and bond returns [18–21]. More extensive and complex GARCH models were developed
to improve the forecasting model. For example, a fuzzy GJR-GARCH model using fuzzy inference
systems [22], hybrid neural network GJR-GARCH models [23,24] for volatility forecasting of indexes, a
mixture of integer-valued models with different distributions in GARCH model [25], and a hidden
Markov Exponential GARCH model for volatility forecasting of crude oil price [26]. Another approach
toward improving the GARCH model was introduced by using a sliding window technique to forecast
future values in various fields; this was called the sliding window GARCH (SWGARCH) model [27,28].
These hybrid models produced more accurate results than the classic forecasting models considered in
the studies.

Although these numerical models outperform the conventional forecasting models, forecasting
errors are still debated regarding the issue of accuracy. Forecasting accurately facilitates researchers in
decision-making; therefore, the existing models must be improved. The applications of ANN, GJR,
and Markov chain methods are very popular but undesirable in this study due to their complex and
lengthy computation processes. The computation is also not easy to understand and only concerned
with weight adjustment [29]. Moreover, the common neural networks are inefficient for detecting
nonlinear or dynamic behaviors [30] and are unable to independently manage data uncertainties [31],
thus decreasing the forecasting efficiency. It is important to develop a new forecasting model with
a low accuracy error [32]. In addition, the fuzzy theory in some hybrid models [33,34] can estimate
nonlinear continuous functions uniformly with an arbitrary accuracy, thereby producing more precise
results than GARCH models. However, the computations of the hybrid fuzzy models are lengthy and
incomprehensible. Thus, our study considers improving the GARCH model into a more understandable
and less complex model.

In previous studies, the GARCH models were sensitive to extreme values in certain seasonal
months [14,27]. The sensitivity of the GARCH model depends on the parameter estimation using the
maximum likelihood method (MLM). The likelihood method is sensitive to the selection of initial
values and the data distribution. The existence of uncertainties in time-series data makes it unreliable
to employ the likelihood method to manage the uncertainties because no specific distribution is
known. This drawback poses a major issue in terms of the instability of time-series forecasting.
The GARCH model imposes parameter restrictions that are often violated by estimated coefficients
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that may improperly limit the dynamics of the conditional variance process [35]. The GARCH model
is also unable to capture the influence of each variance in the observation as the model uses a long-run
average variance. The calculation of the long-run average variance, which is used to determine the
weight of forecast, only considers the series in its entirety; therefore, the information on different effects
of the variances in each observation is disregarded. Hence, our study improves the GARCH model
in terms of parameter estimation and variance calculation to search for the most effective model for
forecasting time-series data.

Therefore, this study proposes a new time-series forecasting model by combining the GARCH
model with two methods; the first model is the fuzzy linear regression (FLR), which is used to
estimate the parameters of the model, and the second is the fuzzy sliding window (FSW) variance,
which is used to determine the weight of the forecast. The FLR is used for parameter estimation to
reduce the computation risk and overcome the inter-correlation problem associated with independent
variables [36]. It is capable of addressing uncertainties and handling fluctuating information and/or
linguistic variables. The FLR is also more robust at handling outlier effects [37]. When applied to
finance, FLR generates better estimates than the traditional approach [38]. This approach is very
useful when facing unstable time-series data caused by uncertainties. The FSW variance is used to
calculate the variance of the model. The FSW variance improves the proposed model by replacing
the component of the long-run average variance in the GARCH. The FSW variance combines fuzzy
theory and the sliding window technique. Applications of the sliding window technique are useful
in forecasting [39]. The technique was used to determine the adjustment weights of the forecast
and a certain number of splits to create a small number of intervals [40]. The performance of the
sliding window technique enables researchers to understand how cases work and change the efficiency
pattern [41]. SWGARCH [27] improved the GARCH model by using the sliding window technique
to produce a window variance that is calculated based on principal component analysis (PCA) to
determine the weight of the forecast. Although the steps are straight-forward, the determination
of weight based on the PCA is unconvincing and inaccurate. Thus, the SWGARCH model cannot
guarantee a highly accurate performance and further complicates the forecasting process. The new
combination of the proposed model is beneficial as the FSW variance can capture the impact of each
variance in the observation and retain information on various effects of each observation. This attempt
is also very useful as the model can select an accurate window size, as well as determine the accurate
weight of the forecast. The latter ensures the best accuracy performance. In addition, the computation
of the proposed model is simple since it involves only four simple steps, allows for faster calculations,
and requires a small memory space. Furthermore, the proposed model is capable of reducing calculated
risk, address uncertainties in variables, and capitalizing on FLR to manage fuzzy data or linguistic
variables. Therefore, this study aims to exploit the advantages of the FLR and the fuzzy window
variance to address the drawbacks of the existing models. The sections below explain the algorithm of
the proposed model, the implementation, the results, and the conclusion of the study.

2. The Proposed Model

2.1. FLR-FSWGARCH Model

The proposed model consists of four steps, as shown in Figure 1. The first step is the parameter
estimation using fuzzy linear regression, the second step is the return computation, the third step is
the fuzzy window variance computation, and the last step is the forecasting. The new combination of
the GARCH model with two methods is done in the first and third steps. A fuzzy sliding window
algorithm was developed in this model to be used in the first and the third steps.
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2.1.1. Parameter Estimation Using Fuzzy Linear Regression

The first step of the FLR-FSWGARCH is the parameter estimation using FLR. The FLR contains
three components; the first component concerns the dependent variable, the second concerns the
independent variables, and the third concerns the parameter coefficients. To select the independent
variables, a fuzzy sliding window algorithm was developed. In the fuzzy sliding window algorithm,
the minimum and maximum values of the dataset are determined. Then, the dataset undergoes a
fuzzification process in which the crisp values of the data are transformed into triangular fuzzy numbers
(TFNs). A matrix size of 12 × 1 for the current year (Y) and a matrix size of 24 × 1 for the previous
year (PY), which consists of 24 months from the previous two years, are constructed, as adopted
from the study by Kapoor and Bedi [29]. The matrix PY is used to construct 12 sliding window slices.
The sliding windows are labeled SWi and have the same size as the matrix Y. The partitions of the
sliding windows SWi and the matrix Y are given in Equations (1) and (2), respectively:

SWi =
{
Xn−i, Xn−(i−1), Xn−(i−2), Xn−(i−3), . . .

}
, (1)

Yi = {Xn−11, Xn−10, Xn−9, . . . , Xn}, (2)

where Xn-i (i = 1, 2, 3, . . . , 12) is the previous observation of the first element in matrix Y. Both matrices
SWi and Y are in the TFN form where SWi = (x1, x2, x3) and Y = (y1, y2, y3). Then, the Euclidean
distance, Edi, for every 12 fuzzified sliding windows is obtained by using Equation (3):

Y j − SW j = (y1 − x3, y2 − x2, y3 − x1) = (z1, z2, z3) (3)

where j = 1, 2, 3, . . . , 12 is the row of the elements in both the Y and SW matrices. Next, the Euclidean
distance computed using Equation (3) is further defuzzified using Equation (4):

Edii, j =
z1 + 2(z2) + z3

4
. (4)

The mean Euclidean distance is calculated using Equation (5):

Edii =

√√√√ 12∑
j=1

(
Edii, j

)2
. (5)

The three windows that produce the lowest mean Euclidean distance are selected to be the
independent variables of the FLR. Now, the dependent variable is the TFN of the actual data, defined
as Ỹ, while the three selected windows act as the independent variable of the regression. This study
uses multivariate FLR [36], as shown in Equation (6):

Ỹ = β̃X1 + α̃X2 + γ̃X3. (6)

The TFN of the actual data is expressed as Equation (7):

Ỹ = ([1− µ]ei,L, yi, [1− µ]ei,R), (7)

where µ is the membership function, yi is the mode of the TFN, and ei,L and ei,R are the width of the left
and right values with the mode of the TFN, respectively. In this study, we considered the dependent
variables to be symmetrical TFNs given as Ỹi; thus, ei,L = ei,R, as shown in Figure 2.
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Then, matrix algebra is employed to estimate the parameters. The FLR can be expressed in the
following matrix form:

Ỹ = δ̃X, (8)

where

Ỹ =


(1− µ)e1,L y1 (1− µ)e1,R
(1− µ)e2,L y2 (1− µ)e2,R

...
...

...
(1− µ)en,L yn (1− µ)en,R

, (9)

X =


x11 x12 x13

x21 x22 x23
...

...
...

xn1 xn2 xn3

, (10)

δ̃ =


β̃
α̃
γ̃

 =

(1− µ)βL β2 (1− µ)βR
(1− µ)αL α2 (1− µ)αR
(1− µ)γL γ2 (1− µ)γR

. (11)

Matrix δ̃ is in the form of TFNs that contain a least-squares estimation of the regression coefficients.
To obtain the regression parameters of δ̃, Equation (8) can be transformed using matrix operations and
derived, as follows:

δ̃ =
[
(X′X)−1X′Ỹ

]
, (12)

where X′ is the transpose matrix of X, while (X′X)−1 is the inverse matrix of X′X. The fitted fuzzy
regression equation can be developed based on the estimated regression coefficients. The estimated
regression coefficients, which are in the form of TFNs, need to be defuzzified (D) into a crisp output
using Equation (13):

D =
δ1 + 2(δ2) + δ3

4
, (13)

where δ1, δ2, and δ3 are the first, second, and third elements of the TFN forms, respectively.

2.1.2. Return Computation

In step two of the proposed model, the returns of the observation are computed by squaring the
change in the rate (Si) at the end of timei, for example, monthi and yeari:

u2
t =

[
Si − Si−1

Si−1

]2

. (14)

The return is defined as the continuously compounded return during time i, or it can be considered
the gain or loss of value in a particular period.
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2.1.3. Fuzzy Window Variance Computation

The fuzzy window variance is then calculated in the third step of the proposed model. The fuzzy
window variance is a summation of the multiplication of each weight with the returns of the observation.
It is employed in the FLR-FSWGARCH model as follows:

Fw = u2
t ×W1 + u2

t−1 ×W2 + . . .+ u2
n ×Wn, (15)

where Wi is the fuzzy window weight that is subject to Wi + Wi−1 + Wi−2 + . . .+ Wi−n = 1. The fuzzy
window weight is determined by selecting the window that produced the minimum mean Euclidean
distance in the previous step. The time series gives more weight to recent events as opposed to older
observations. The total of the window size weights is calculated using Equation (16) and then the
weights are normalized using Equation (17):

TL = wn + wn−1 + wn−2 + · · ·+ w1

= 1 + 2 + 3 + · · · n,
(16)

Wi =
wi
TL

, (17)

where the wi are the weights that are dependent on the selection of the sliding window. Then, the
fuzzy window variance is utilized in the computation of the variance σ2 based on the most recent
return and the most recent variance using a recursive procedure:

σ2
n = γFw + αu2

n−1 + βσ2
n−1, (18)

where u2
n−1 is a recent return and σ2

n−1 is a recent variance.

2.1.4. Forecasting

The future values are forecasted using the expected forecast variance in the step four of the
proposed model. The expected forecast variance is computed by using the fuzzy window variance as
the weight of forecasting, as follows:

E
[
σ2

n+t

]
= Fw + (α+ β)t

×

(
σ2

n − Fw
)
, (19)

where n represents the month of the calculated variance and t represents the additional time that will
reflect the forecasted month. Finally, the forecasted value is computed using Equation (20):

Xn+1 = Xn + (Xn)
(
E
[
σ2

n

])
, (20)

where Xn is the current observation.

2.2. Validation and Evaluation of the Proposed Model

The mean absolute percentage error (MAPE) was used for comparing and assessing the accuracy
performance of the model, as given below:

MAPE =
n∑
1

∣∣∣Yi − Ŷi
∣∣∣

Yi
× 100. (21)

If the MAPE of the proposed model is less than the benchmark models, then the accuracy of the
proposed model is better [42]. The benchmark models that were used for the performance comparison
were SWGARCH, GARCH, ARIMA-GARCH, and EWMA.
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Furthermore, regression analysis was done to verify the performance of the proposed model.
The analysis also determined the relationship between the variance of FSWGARCH and its covariates,
which were the fuzzy window variance, recent returns, and recent variances. The R2 in the regression
analysis tests on a scale of 0–100 percent shows the strength of the relationship between the model and
its covariates. Hypothesis testing was also developed, as given below:

H0 : β1 = β2 = β3 = 0,

H1 : at least one of βi , 0.

The test statistic used in this study was F0 = MSR
MSE

, where MSR = SSR
k and MSE = SSE

n−p , with the

rejection criteria of F0 = MSR
MSE

> fα/2,k,n−p, where fα/2,k,n−p is the critical value. If H0 is rejected, then
there is enough evidence to say that the proposed model is significantly better.

3. Implementations and Results

3.1. Forecasting of the Stock and Price (S&P) Index Using the FLR-FSWGARCH Model

Daily data from the S&P index covering a period from 2 January 2015 to 10 September 2015 was
obtained from Yahoo Finance. Figure 3 plots the daily S&P used in this study. The x-axis is the day
numbered from 1 to 252, while the y-axis is the S&P.
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The trend is apparent from the plot, indicating the necessity of a suitable model for nonlinear
time-series forecasting, such as the FLR-FSWGARCH model. Next, the minimum and maximum
observations of the S&P indexes were 1867.61 and 2130.82, respectively. The data was fuzzified using
TFNs, as shown in Figure 4.

A 12 × 1 matrix of the current year Y and 12 × 1 matrices of 12 sliding windows (SW) were formed
from the data and tabulated, as shown in Table 1.
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values were calculated to find the Euclidean distance of each window. The size of the forecasting was 
determined from the selected window that produced the minimum mean Euclidean distance. An 
example of a calculation using matrices Y and SW1 to produce the Euclidean distance is shown below. 

i. The difference between the current and previous values (only displays the calculation of the first 
row). 𝑌ଵ − 𝑆𝑊ଵ,ଵ = (2000 − 2050,2050 − 2000,2100 − 1950) = (−50,50,150).  

ii. The defuzzification: 𝐸𝑑𝑖ଵ,ଵ = ିହାଶ(ହ)ାଵହସ = 50.  

iii. The mean Euclidean distance: 

SW4 

SW2 

SW5 

SW6 

SW7 

SW8 
SW9 

SW10 

SW11 

SW12 

SW3 

SW1 

After partitioning the sliding windows, the differences between the current values and previous
values were calculated to find the Euclidean distance of each window. The size of the forecasting was
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determined from the selected window that produced the minimum mean Euclidean distance. An example
of a calculation using matrices Y and SW1 to produce the Euclidean distance is shown below.

i. The difference between the current and previous values (only displays the calculation of the
first row).

Y1 − SW1,1 = (2000− 2050, 2050− 2000, 2100− 1950) = (−50, 50, 150).

ii. The defuzzification:

Edi1,1 =
−50 + 2(50) + 150

4
= 50.

iii. The mean Euclidean distance:

Edii =

√
12∑

j=1

(50)2 + (0)2 + (0)2 + (−50)2 + (0)2 + (50)2 + (0)2 + (0)2 + (0)2 + (50)2

+(−50)2 + (0)2 = 111.8034

The Euclidean distance calculated for each sliding window is shown in Table 2.

Table 2. Mean of Euclidean distance for the twelve sliding windows, SWi.

Sliding Window, SWi Mean of Edi

1 111.8034
2 141.4214
3 132.2876
4 111.8034
5 111.8034
6 141.4214
7 150.0000
8 141.4214
9 158.1139

10 193.6492
11 187.0829
12 180.2776

From Table 2, based on the Euclidean distance, it was found that SW1, SW4, and SW5 produced
the smallest distances; thus, they were selected to be the explanatory variables, Xi, for the FLR analysis.
The proposed computation for parameter estimation was employed on the data to produce:

Ỹ =



2000 2050 2100
2000 2050 2100
2000 2050 2100
1950 2000 2050
1950 2000 2050
2000 2050 2100
2000 2050 2100
2000 2050 2100
2000 2050 2100
2050 2100 2150
2000 2050 2100
2000 2050 2100



,
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X =



2021.94 2047.62 2063.59
2043.41 2052.23 2047.62
2073.07 2012.37 2052.23
2041.89 2021.94 2012.37
2005.55 2043.41 2021.94
2021.15 2073.07 2043.41
2038.97 2041.89 2073.07
2064.29 2005.55 2041.89
2060.99 2021.15 2005.55
2056.50 2038.97 2021.15
2078.36 2064.29 2038.97
2063.36 2060.99 2064.29



.

By using Equation (12), the estimated regression parameters δ̃ were:

∂̃ =


β̃
α̃
γ̃

 =


0.55677 0.56674 0.57671
0.24627 0.25600 0.26574
0.17319 0.17796 0.18273

.
Finally, the estimated FLR equation could be written as:

ˆ̃Y = (0.55674, 0.55677, 0.57671)X1 + (0.24600, 0.24627, 0.26574)X2 + (0.17796, 0.17319, 0.18273)X3.

The δ̃ was then defuzzified using Equation (8) to get the crisp values of β, α, and γ.

β = 0.55677+2×0.56674+0.57671
4 = 0.566741,

α = 0.242627+2×0.25600+0.26574
4 = 0.256005,

γ = 0.17319+2×0.17796+0.18273
4 = 0.177962.

The estimated parameters β, α, and γ were used in FSWGARCH model to predict the data in
steps three and four. After discovering the optimal parameters, returns of the observations were
calculated by squaring the change in the number of S&P at the end of the month. Then, the fuzzy
window variance (Fw), which was computed by summing up the multiplication of each weight with the
returns of the observation, was employed in the FSWGARCH model. For this dataset, the three sliding
windows produced the same minimum mean of the Euclidean distance, as stated in Table 2, which
were SW1, SW4, and SW5. Thus, the variation of the three windows were calculated. The smallest
variation produced by those windows was selected to determine the weight of the forecast. For the
S&P dataset, the smallest variation among those three windows was SW5; thus, the total weight of
Fw was 1 + 2 + 3 + 4 + 5 = 15. After some calculation, the model produced Fw and the variance, as
shown in columns three and four, respectively, in Table 3. The first fuzzy window variance and the
first variance of the FLR-FSWGARCH model started with month 6 as their weight included the first
five returns.

The forecasting was then continued by calculating the expected variance and the forecast value,
as given in Equations (19) and (20). The forecast value with the respective percentage errors is shown
in Table 4. It can be observed that there was a slight difference between the actual observation and the
forecasted value. The percentage errors in the fourth column were near 1%. The illustration of the
actual data and forecast value of S&P data is displayed in Figure 5.
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Table 3. Fuzzy window variance and variance of the FLR-FSWGARCH model.

Day S&P Return Fuzzy Window
Variance Variance

1 2058.20
2 2020.58 3.40 × 10−4

3 2002.61 7.98 × 10−5

4 2025.90 1.34 × 10−4

5 2062.14 3.14 × 10−4

6 2044.81 7.12 × 10−5 1.67636 × 10−4 1.6764 × 10−4

7 2028.26 6.60 × 10−5 1.27025 × 10−4 1.3585 × 10−4

8 2023.03 6.67 × 10−6 8.49053 × 10−5 1.0901 × 10−4

9 2011.27 3.40 × 10−5 5.67693 × 10−5 7.3588 × 10−5

10 1992.67 8.63 × 10−5 5.27244 × 10−5 5.9790 × 10−5

...
...

...
...

...

Table 4. Forecast value and error percentage of the S&P data.

Day S&P Forecast Value |Percentage Error|

243 2041.89 2073.34 1.5403
244 2005.55 2042.22 1.8284
245 2021.15 2005.94 0.7526
246 2038.97 2021.58 0.8528
247 2064.29 2039.30 1.2104
248 2060.99 2064.58 0.1741
249 2056.50 2061.25 0.2309
250 2078.36 2056.66 1.0440
251 2063.36 2078.49 0.7332
252 2043.94 2063.51 0.9573
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3.2. Comparison and Evaluation of the Proposed FLR-FSWGARCH Model with Benchmark Models for
Two Datasets

For contrast, the performance of the proposed model was compared to the SWGARCH, GARCH,
ARIMA-GARCH, and EWMA models. Two datasets were involved; the first was the daily S&P index,
as shown in Section 3.1, and the second was the yearly data for vanilla production covering 1961 to 2017
obtained from knoema.com. The mean absolute percentage errors produced by the models for both the
monthly S&P and yearly vanilla datasets were compared and the results are summarized in Table 5.
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Table 5. Mean absolute percentage error (MAPE) of the datasets for different models.

Error MAPE

Model S&P Dataset Vanilla Production Dataset

FLR-FSWGARCH 0.69687 11.5308
SWGARCH 0.70105 26.6458

GARCH 0.71922 25.6947
ARIMA-GARCH 0.70728 20.8743

EWMA 0.69720 26.8468

As shown in Table 5, the FLR-FSWGARCH model produced a lower MAPE compared to
the SWGARCH, GARCH, ARIMA-GARCH, and EWMA models for both datasets. It is clear that
the FLR-FSWGARCH model outperformed the other models at forecasting the time-series data.
The proposed model also underwent a goodness-of-fit test using regression analysis to test its efficiency.
The results of the analysis are tabulated in Tables 6 and 7.

From Tables 6 and 7, the values of R2 were 0.9981 for S&P and 0.9999 for vanilla production; thus,
a strong relationship existed between the variables of the model. By taking the significance level to be
α = 0.05, the F values of both datasets were significant and the variables fuzzy window variance, recent
returns, and recent variances were also statistically significant. Therefore, it can be concluded that the
proposed model was significantly fitted and efficient. The proposed model could forecast accurately in
both economics and agriculture.

Table 6. Analysis of the S&P dataset.

Regression Statistics

Multiple R 0.9981
R2 0.9962

Adjusted R2 0.9962
Standard Error 6.449 × 10−6

Observations 245

df SS MS F Significance F

Regression 3 2.632 × 10−6 8.773 × 10−7 2.109 × 104 2.404 × 10−291

Residual 241 1.003 × 10−8 4.160 × 10−11

Total 244 2.642 × 10−6

Coefficients Standard Error t Statistic p-Value

Intercept 1.912 × 10−7 5.797 × 10−7 0.3299 0.7418
Fw 0.08091 7.631 × 10−3 10.60 8.244 × 10−22

u2
n−1 0.1257 2.609 × 10−3 48.20 9.879 × 10−126

σ2
n−1 0.7909 9.013 × 10−3 87.75 6.560 × 10−185

Table 7. Analysis of the vanilla production dataset.

Regression Statistics

Multiple R 0.9999
R2 0.9999

Adjusted R2 0.9999
Standard Error 8.443 × 10−4

Observations 46

df SS MS F Significance F

Regression 3 1.690 0.5634 7.894 × 105 8.844 × 10−100

Residual 42 2.998 × 10−5 7.137 × 10−7

Total 45 1.690

Coefficients Standard Error t Statistic p-Value

Intercept 1.921 × 10−4 1.573 × 10−4 1.221 0.2290
Fw 0.6349 4.979 × 10−4 1275 5.517 × 10−98

u2
n−1 0.3013 1.099 × 10−3 274.0 6.088 × 10−70

σ2
n−1 0.06328 1.447 × 10−3 43.72 1.184 × 10−36
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4. Conclusions

In this study, a new model for time-series forecasting was presented. The model was presented
in two phases. The first phase was fuzzy linear regression that was used to replace the maximum
likelihood method in parameter estimation. The second was the fuzzy window variance used to
replace the long-run average variance component. Two datasets were used to test the performance of
the proposed model; the first was from economics and the second was from agriculture. The forecasted
values obtained from the use of the proposed model were compared to the benchmark models.
The empirical results show that the proposed FLR-FSWGARCH model produced highly accurate
forecasting values and a lower mean absolute percentage error (MAPE) than the SWGARCH, GARCH,
ARIMA-GARCH, and EWMA models. This demonstrates that the FLR-FSWGARCH model was
capable of giving a superior forecast compared to the benchmark models. Furthermore, the results also
confirmed that the proposed model was highly reliable and significantly fit for forecasting time-series
data as the R2 were more than 90% for both datasets. These indicated that the combination of the
FLR and FSW variance with the GARCH model was adept at addressing uncertainties and handling
fluctuating information. The highlight of this work lies in the application of FLR and FSW variance,
which overcomes the limitation of the GARCH. The FLR curbs the inter-correlation problem associated
with independent variables, while the FSW variance captures the influence of the variance on each
observation and determines the true window selection for the weight of the forecast to produce a
highly accurate performance.

In view of the need for a model that is easily understood by most people, particularly forecasters,
the proposed model is computationally simple and practical as it does not involve any complex
computations or simulations. The equations in the proposed model can be applied in Excel to obtain the
estimated parameters of models and calculate the forecasts automatically. In addition, the application
of the proposed model extends beyond the fields of economics to even include use in agriculture.
Therefore, the proposed forecasting model could be used as an alternative to better forecast sustainable
prices and growth, thereby improving a country’s economy. The application of the FLR-FSWGARCH
model will also facilitate the decision-making processes associated with forecasting practice. For further
studies, more attention should be paid to the fuzzification process by imposing a bipolar fuzzy set
to form the triangular fuzzy numbers. The bipolar fuzzy set is an extension of a fuzzy set whose
membership degree range is (−1,1), which is different from the current study, which uses a membership
degree range of (0,1). The performance of the proposed model will be more superior by using the
bipolar fuzzy set as previous research has shown its advantages when handling vagueness and
uncertainty over a fuzzy set.
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